ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Design and pre-flight testing of the electrical power system for the ESTCube-1 nanosatellite; pp. 232–241
PDF | doi: 10.3176/proc.2014.2S.04

Authors
Mihkel Pajusalu, Erik Ilbis, Taavi Ilves, Mihkel Veske, Jaanus Kalde, Henri Lillmaa, Ramon Rantsus, Martynas Pelakauskas, Ahto Leitu, Kaupo Voormansik, Viljo Allik, Silver Lätt, Jouni Envall, Mart Noorma
Abstract

This work describes the final design and implementation of the electrical power system for ESTCube-1, a 1-unit CubeSat tasked with testing the electrostatic tether concept and associated technologies for the electric solar wind sail in polar low Earth orbit. The mission required an efficient and reliable power system to be designed that could efficiently handle highly variable power requirements and protect the satellite from damage caused by malfunctions in its individual subsystems, while using only commercial-off-the-shelf components. The system was developed from scratch and includes a novel redundant stand-alone nearly 90% efficient maximum power point tracking system, based on a commercially available integrated circuit, a lithium-ion battery based fault-tolerant power storage solution, a highly controllable and monitorable power distribution system, capable of sustaining loads of up to 10 W, and an AVR microcontroller based control solution, heavily utilizing non-volatile ferroelectric random access memories. The electrical power system was finalized in January 2013 and was launched into orbit on 7th of May, 2013. In this paper, we describe the requirements for the subsystem, the design of the subsystem, pre-flight testing, and flight qualification.

References

 

  1. Lätt, S., Slavinskis, A., Ilbis, E., Kvell, U., Voorman­sik, K., Kulu, E. et al. ESTCube-1 nanosatellite for electric solar wind sail in-orbit technology demonstra­tion. Proc. Estonian Acad. Sci., 2014, 63(2S), 200–209.

  2. Munakata, R. CubeSat Design Specification Rev. 12, The CubeSat Program, Cal Poly SLO, San Luis Obispo, 2009.

  3. Janhunen, P. Electric sail for spacecraft propulsion. AIAA J. Propul. Power, 2004, 20, 763–764.
http://dx.doi.org/10.2514/1.8580

  4. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E., et al. Electric solar wind sail: Toward test missions. Rev. Sci. Instrum., 2010, 81, 111301.
http://dx.doi.org/10.1063/1.3514548

  5. Janhunen, P., Quarta, A. A., and Mengali, G. Electric solar wind sail mass budget model. Geosci. Instrum. Method. Data Syst., 2013, 2, 85–95.
http://dx.doi.org/10.5194/gi-2-85-2013

  6. Seppänen, H., Kiprich, S., Kurppa, R., Janhunen, P., and Hæggström, E. Wire-to-wire bonding of μm-diameter aluminum wires for the Electric Solar Wind Sail. Microel. Eng., 2011, 88, 3267–3269.
http://dx.doi.org/10.1016/j.mee.2011.07.002

  7. Envall, J., Janhunen, P., Toivanen, P., Pajusalu, M., Ilbis, E., Kalde, J. et al. E-sail test payload of the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 210–221.

  8. Ilbis, E. ESTCube-1 Electrical Power System – Design, Implementation and Testing. Department of Science and Technology, University of Tartu, Tartu, Estonia, 2013.

  9. Pajusalu, M., Rantsus, R., Pelakauskas, M., Leitu, A., Ilbis, E., Kalde, J. et al. Design of the electrical power system for the ESTCube-1 satellite. Latv. J. Phys. Tech. Sci., 2012, 49, 16–24.

10. Stras, L. N., Kekez, D. D., Wells, G. J., Jeans, T., Zee, R. E., Pranajaya, F. M. et al. The design and operation of the Canadian advanced nanospace eXperiment (CanX-1). In Proc. AMSAT-NA 21st Space Symposium. Toronto, Canada, 2003, 150–160.

11. Bester, J., Groenewald, B., and Wilkinson, R. Electrical power system for a 3U CubeSat nanosatellite incorporating peak power tracking with dual redundant control. Przegląd Elektrotechniczny. Selected full texts, 2012, 88, 300–304.

12. Torp, M., Hansen, M. M., Hagedorn, J., Fjallheim, E. R., and Löfstedt, M. R. Ø. AAUSAT-II Electrical Power System Preliminary Design Document Power Sub­system Design, 2005.

13. Santoni, F., Piergentili, F., and Graziani, F. Broglio Drag Balance for neutral thermosphere density measurement on UNICubeSAT. Adv. Space Res., 2010, 45, 651–660.
http://dx.doi.org/10.1016/j.asr.2009.10.001

14. Clark, C. S. and Mazarias, A. L. Power system challenges for small satellite missions. In Proc. European Small Satellite Services Symposium, 2006.

15. Philofsky, E. M. FRAM – the ultimate memory. In Proc. Sixth Biennial IEEE International Nonvolatile Memory Technology Conference, 1996. 1996, 99–104.
http://dx.doi.org/10.1109/NVMT.1996.534679

16. Chetan, A. STUDSAT: India's First Student Pico-satellite Project (Zhora, M., Chetan, D., Vigneswaran, K., Avinash, G. S., Prithvi Raj, N., Shwetha, P. et al., eds), 2011, 1–15.

17. Kuuste, H., Eenmäe, T., Allik, V., Agu, A., Vendt, R., Ansko, I. et al. Imaging system for nanosatellite proximity operations. Proc. Estonian Acad. Sci., 2014, 63(2S), 250–257.

18. Laizans, K., Sünter, I., Zalite, K., Kuuste, H., Valgur, M., Tarbe, K. et al. Design of the fault tolerant command and data handling subsystem for ESTCube-1. Proc. Estonian Acad. Sci., 2014, 63(2S), 222–231.

19. Slavinskis, A., Kulu, E., Viru, J., Valner, R., Ehrpais, H., Uiboupin, T. et al. Attitude determination and control for centrifugal tether deployment on the ESTCube-1 nanosatellite. Proc. Estonian Acad. Sci., 2014, 63(2S), 242–249.

20. Slavinskis, A., Kvell, U., Kulu, E., Sünter, I., Kuuste, H., Lätt, S. et al. High spin rate magnetic controller for nanosatellites. Acta Astronaut., 2014, 95, 218–226.
http://dx.doi.org/10.1016/j.actaastro.2013.11.014

21. Maurer, R. H., Fraeman, M. E., Martin, M. N., and Roth, D. R. Harsh environments: Space radiation environment, effects, and mitigation. J. Hopkins APL Tech. D., 2008, 28, 17–29.

22. Díaz-Michelena, M. Small magnetic sensors for space applications. Sensors, 2009, 9, 2271–2288.
http://dx.doi.org/10.3390/s90402271

23. Avery, K., Finchel, J., Mee, J., Kemp, W., Netzer, R., Elkins, D. et al. Total dose test results for CubeSat electronics. In IEEE Radiation Effects Data Workshop (REDW), 2011. Las Vegas, Nevada, 2011, 1–8.

24. Underwood, C. I. Observations of radiation in the space radiation environment and its effect on commercial off-the-shelf electronics in low-Earth orbit. Philos. T. Roy. Soc. A, 2003, 361, 193–197.
http://dx.doi.org/10.1098/rsta.2002.1122

25. Esram, T. and Chapman, P. L. Comparison of photovoltaic array maximum power point tracking techniques. IEEE T. Energy Conver., 2007, 22, 439–449.
http://dx.doi.org/10.1109/TEC.2006.874230

26. Pelakauskas, M. ESTCube-1 Satellite Electrical Power System Battery Subsystem Design and Testing. Master’s Thesis. Faculty of Science and Technology, Institute of Physics, University of Tartu, Tartu, Estonia, 2011.

 

Back to Issue