We analyse the potential of the electric solar wind sail for solar system space missions. The applications studied include flyby missions to terrestrial planets (Venus, Mars and Phobos, Mercury) and asteroids, missions based on non-Keplerian orbits (orbits that can be maintained only by applying continuous propulsive force), one-way boosting to the outer solar system, off-Lagrange point space weather forecasting, and low-cost impactor probes for added science value to other missions. We also discuss the generic idea of data clippers (returning large volumes of high-resolution scientific data from distant targets packed in memory chips) and possible exploitation of asteroid resources. Possible orbits were estimated by orbit calculations assuming circular and coplanar orbits for planets. Some particular challenge areas requiring further research work and related to some more ambitious mission scenarios are also identified and discussed.
1. Janhunen, P. and Sandroos, A. Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys., 2007, 25, 755–767.
http://dx.doi.org/10.5194/angeo-25-755-2007
2. McInnes, C. R. Solar Sailing: Technology, Dynamics and Mission Applications. Springer, 2004.
3. Zubrin, R. M. and Andrews, D. G. Magnetic sails and interplanetary travel. J. Spacecr. Rockets, 1991, 28, 197–203.
http://dx.doi.org/10.2514/3.26230
4. Janhunen, P., Toivanen, P. K., Polkko, J., Merikallio, S., Salminen, P., Haeggström, E. et al. Electric solar wind sail: towards test missions. Rev. Sci. Instrum., 2010, 81, 111301.
http://dx.doi.org/10.1063/1.3514548
5. Janhunen, P. Electrostatic plasma brake for deorbiting a satellite. J. Prop. Power, 2010, 26, 370–372.
http://dx.doi.org/10.2514/1.47537
6. Janhunen, P. Increased electric sail thrust through removal of trapped shielding electrons by orbit chaotisation due to spacecraft body. Ann. Geophys., 2009, 27, 3089–3100.
http://dx.doi.org/10.5194/angeo-27-3089-2009
7. Janhunen, P. PIC simulation of Electric Sail with explicit trapped electron modelling. In 6th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM-2011), Valencia, Spain, June 13–17 (Pogorelov, N. V. and Font, J. A., eds), ASP Conf. Ser., 2012, 459, 271–276.
8. Janhunen, P. Physics of thrust prediction of the solar wind electric sail propulsion system. In Numerical Modeling of Space Plasma Flows, (ASTRONUM-2009), Chamonix, France, June 29–July 3 (Pogorelov, N. V., Audit, E., and Zank, G. P., eds), ASP Conf. Ser., 2010, 429, 187–192.
9. Siguier, J.-M., Sarrailh, P., Roussel, J.-F., Inguimbert, V., Murat, G., and SanMartin, J. Drifting plasma collection by a positive biased tether wire in LEO-like plasma conditions: current measurement and plasma diagnostic. IEEE Trans. Plasma Sci., 2013, 41, 3380–3386.
http://dx.doi.org/10.1109/TPS.2013.2257871
10. Janhunen, P., Quarta, A., and Mengali, G. Electric solar wind sail mass budget model. Geosci. Instrum. Method. Data Syst., 2013, 2, 85–95.
http://dx.doi.org/10.5194/gi-2-85-2013
11. Toivanen, P. K. and Janhunen, P. Electric sailing under observed solar wind conditions. Astrophys. Space Sci. Trans., 2009, 5, 61–69.
http://dx.doi.org/10.5194/astra-5-61-2009
12. Quarta, A. A., Mengali, G., and Janhunen, P. Optimal interplanetary rendezvous combining electric sail and high thrust propulsion system. Acta Astronaut., 2010, 68, 603–621.
http://dx.doi.org/10.1016/j.actaastro.2010.01.024
13. Quarta, A. A. and Mengali, G. Electric sail missions to potentially hazardous asteroids. Acta Astronaut., 2010, 66, 1506–1519.
http://dx.doi.org/10.1016/j.actaastro.2009.11.021
14. Merikallio, S. and Janhunen, P. Moving an asteroid with electric solar wind sail. Astrophys. Space Sci. Trans., 2010, 6, 41–48.
http://dx.doi.org/10.5194/astra-6-41-2010
15. Brophy, J. R., Gershman, R., Landau, D., Polk, J., Porter, C., Yeomans, D. et al. Feasibility of capturing and returning small Near-Earth Asteroids. In Proc. 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11–15 Sept. 2011. IEPC-2011-277, 2011 [http://erps.spacegrant.org/uploads/images/images/iepc articledownload 1988-2007/ 2011index/IEPC-2011-277.pdf; accessed 20 April 2014].
16. Mengali, G. and Quarta, A. Non-Keplerian orbits for electric sails. Cel. Mech. Dyn. Astron., 2009, 105, 179–195.
http://dx.doi.org/10.1007/s10569-009-9200-y
17. Granvik, M., Vaubaillon, J., and Jedicke, R. The population of natural Earth satellites. Icarus, 2012, 281, 262–277.
http://dx.doi.org/10.1016/j.icarus.2011.12.003
18. Ceriotti, M., Diedrich, B. L., and McInnes, C. R. Novel mission concepts for polar coverage: an overview of recent developments and possible future applications. Acta Astronaut., 2012, 80, 89–104.
http://dx.doi.org/10.1016/j.actaastro.2012.04.043
19. Serafini, L., Gonzalez, J., Saccoccia, G., Bandecchi, M., and Pace, O. Application of solar electric propulsion for a near-Sun, high-inclination mission. In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17–19 July, Huntsville. AL, AIAA-2000-3419, 2000.
20. Poncy, J., Couzin, P., and Fontdecaba, J. Data clippers: a new application for solar sails and E-sails. In European Planetary Science Congress, Rome, Italy, 19–24 Sept. 2010. EPSC Abstracts, 5, EPSC2010-539, 2010.
21. Gerlach, C. L. Profitably exploiting near-Earth object resources. International Space Development Conference, National Space Society, Washington, DC, May 19–22, 2005 [presentation; available at http://abundantplanet.org/files/Space-Ast-Profitably-Exploiting-NEO-Gerlach-2005.pdf; accessed 20 April 2014].