Filter passing bacteria have been isolated from a variety of natural environments, appearing as a mixture of Gram-positive and Gram-negative, as well as nano-forms and wall-free species. In this study, filter passing bacteria were isolated from surfaces located in various dental departments at the College of Dentistry, King Saud University Hospital. Surface samples were obtained by using Q-tip swabs, with ten different surfaces being sampled in each clinic during pre-patient and post-patient visits. Filterable bacteria (using 0.4 and 0.2 micron filters, but not 0.1 micron filter) were isolated, being mainly Gram-positive cocci. Isolation results of filterable bacteria were compared before and after patient treatment in the clinic. More frequently, filter passing bacteria were isolated on clinic surfaces after patient treatment. The results show that dental settings are contaminated with filterable bacteria which may act as a reservoir for the wider contamination of hospital environments.
1. Alharbi, S. A. Isolation of ultrasmall (filterable) bacteria from patients suffering from ME, and patients and staff of a paediatric hospital. Saudi J. Biol. Sci., 2020, 27(6), 1566–1568.
https://doi.org/10.1016/j.sjbs.2020.03.012
2. Sieburth, J. McN., Smetacek, V., and Lenz, J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnol. Oceanogr., 1978, 23(6), 1256–1263.
https://doi.org/10.4319/lo.1978.23.6.1256
3. Fenchel, T. Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments. Mar. Ecol. Prog. Ser., 1982, 9(1), 25–33.
https://doi.org/10.3354/meps009025
4. Azam, F., Fenchel, T., Field, J. G., Gray J. S., Meyer-Reil, L. A., and Thingstad, F. The ecological role of water – column microbes in the sea. Mar. Ecol. Prog. Ser., 1983, 10, 257–263.
https://doi.org/10.3354/meps010257
5. Fedotova, A. V., Belova, S. E., Kulichevskaya, I. S., and Dedysh, S. N. Molecular identification of filterable bacteria and archaea in the water of acidic lakes of northern Russia. Microbiol., 2012, 81, 281–287.
https://doi.org/10.1134/S002626171203006X
6. Ma, D., Hao, Z., Sun, R., Bartlam, M., and Wang Y. Genome sequence of a typical ultramicrobacterium, Curvibacter sp. strain PAE-UM, capable of phthalate ester degradation. Genome Announc., 2016, 4(1), 1–2.
https://doi.org/10.1128/genomeA.01510-15
7. Nakai, R., Fujisawa, T., Nakamura, Y., Nishide, H., Uchiyama, I., Baba, T., et al. Complete genome sequence of Aurantimicrobium minutum type strain KNCT, a planktonic ultramicrobacterium isolated from river water. Genome Announc., 2016, 4(3), e00616–16.
https://doi.org/10.1128/genomeA.00616-16
8. Narasingarao, P., Podell, S., Ugalde, J. A., Brochier-Armanet, C., Emerson, J. B., Brocks, J. J., et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J., 2012, 6(1), 81–93.
https://doi.org/10.1038/ismej.2011.78
9. Venter, J. C., Remington, K., Heidelberg, J. F., Halpern, A. L., Rusch, D., Eisen, J. A., et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science., 2004, 304(5667), 66–74.
https://doi.org/10.1126/science.1093857
10. Giovannoni, S. J., Tripp, H. J., Givan, S., Podar, M., Vergin, K. L., Baptista, D., et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science,2005, 309(5738), 1242–1245.
https://doi.org/10.1126/science.1114057
11. Glaubitz, S., Kießlich, K., Meeske, C., Labrenz, M., and Jürgens, K. SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the Central Baltic and Black Seas. Appl. Environ. Microbiol., 2013, 79(8), 2767–2776.
https://doi.org/10.1128/AEM.03777-12
12. Rogge, A., Vogts, A., Voss, M., Jürgens, K., Jost, G., and Labrenz, M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r-strategists. Environ. Microbiol., 2017, 19(6), 2495–2506.
https://doi.org/10.1111/1462-2920.13783
13. Suzina, N. E., Esikova, T. Z., Oleinikov, R. R., Gafarov, A. B., Shorokhova, A. P., Polivtseva, V. N., et al. Comparative characteristics of free-living ultramicroscopical bacteria obtained from natural biotopes. Appl. Biochem. Microbiol., 2015, 51(2), 159–168.
https://doi.org/10.1134/S0003683815020192
14. Wu, X., Holmfeldt, K., Hubalek, V., Lundin, D., Åström, M., Bertilsson, S., et al. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J., 2016, 10(5), 1192–1203.
https://doi.org/10.1038/ismej.2015.185
15. Albertsen, M., Hugenholtz, P., Skarshewski, A., Nielsen, K. L., Tyson, G. W., and Nielsen, P. H. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol., 2013, 31(6), 533–538.
https://doi.org/10.1038/nbt.2579
16. Kantor, R. S., Wrighton, K. C., Handley, K. M., Sharon, I., Hug, L. A., Castelle, C. J., et al. Small genomes and sparse metabolisms of sediment-associated bacteria from four candidate phyla. mBio, 2013, 4(5), e00708–13.
https://doi.org/10.1128/mBio.00708-13
17. Brown, C. R., Eskin, J. A., Hamperl, S., Griesenbeck, J., Jurica, M. S., and Boeger, H. Chromatin structure analysis of single gene molecules by psoralen cross-linking and electron microscopy. Methods Mol Biol., 2015, 1228, 93–121.
https://doi.org/10.1007/978-1-4939-1680-1_9
18. Luef, B., Frischkorn, K. R., Wrighton, K. C., Holman, H.-Y. N., Birarda, G., Thomas, B. C., et al. Diverse uncultivated ultra-small bacterial cells in groundwater. Nat. Commun., 2015, 6, 6372.
https://doi.org/10.1038/ncomms7372