The review describes how ideas from the fields of physics and mathematics have influenced the studies on signal propagation in nerves, which has classically been related to electrophysiology and chemistry.
1. Allen, D. H. How Mechanics Shaped the Modern World. Springer, Cham, 2014.
https://doi.org/10.1007/978-3-319-01701-3
2. Altenbach, H. and Öchsner, A. (eds). Encyclopedia of Continuum Mechanics. Springer, Cham, 2020.
https://doi.org/10.1007/978-3-662-55771-6
3. Engelbrecht, J., Tamm, K., and Peets, T. On mechanisms of electromechanophysiological interactions between the components of nerve signals in axons. Proc. Estonian Acad. Sci., 2020, 69(2), 81–96.
https://doi.org/10.3176/proc.2020.2.03
4. Kaufmann, K. Action Potentials and Electromechanical Coupling in the Macroscopic Chiral Phospholipid Bilayer. Caruaru, 1989.
5. Keener, J. and Sneyd, J. Mathematical Physiology. Springer, New York, NY, 1998.
https://doi.org/10.1007/b98841
6. Cohen, J. E. Mathematics is biology’s next microscope, only better; biology is mathematics’ next physics, only better. PLoS Biol., 2004, 2(12), e439.
https://doi.org/10.1371/journal.pbio.0020439
7. Hobbie, R. K. and Roth, B. J. Intermediate Physics for Medicine and Biology. Springer, Cham, 2015.
https://doi.org/10.1007/978-3-319-12682-1
8. Kitano, H. Systems biology: a brief overview. Science, 2002, 295(5560), 1662–1664.
https://doi.org/10.1126/science.1069492
9. Noble, D. The rise of computational biology. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 459–463.
https://doi.org/10.1038/nrm810
10. Gavaghan, D., Garny, A., Maini, P. K., and Kohl, P. Mathematical models in physiology. Philos. Trans. Royal Soc. A, 364(1842), 2006, 1099–1106.
https://doi.org/10.1098/rsta.2006.1757
11. Bialek, W. Perspectives on theory at the interface of physics and biology. Reports Prog. Phys., 2018, 81(1), 012601.
https://doi.org/10.1088/1361-6633/aa995b
12. Clay, J. R. Axonal excitability revisited. Prog. Biophys. Mol. Biol., 2005, 88(1), 59–90.
https://doi.org/10.1016/j.pbiomolbio.2003.12.004
13. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91(2), 555–602.
https://doi.org/10.1152/physrev.00048.2009
14. de Lichtervelde, A. C. L., de Souza, J. P., and Bazant, M. Z. Heat of nervous conduction: A thermodynamic framework. Phys. Rev. E., 2020, 101(2), 022406.
https://doi.org/10.1103/PhysRevE.101.022406
15. Drukarch, B., Holland, H. A., Velichkov, M., Geurts, J. J., Voorn, P., Glas, G., et al. Thinking about the nerve impulse: a critical analysis of the electricity-centered conception of nerve excitability. Prog. Neurobiol., 2018, 169, 172–185.
https://doi.org/10.1016/j.pneurobio.2018.06.009
16. Hodgkin, A. L. The Conduction of the Nervous Impulse. Liverpool University Press, 1964.
17. Nagumo, J., Arimoto, S., and Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE, 1962, 50(10), 2061–2070.
https://doi.org/10.1109/JRPROC.1962.288235
18. Askar, A. Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore, 1986.
https://doi.org/10.1142/0192
19. Maugin, G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press, 1999.
20. Truesdell, C. and Noll, W. The Non-Linear Field Theories of Mechanics. Springer, Berlin, 1965.
https://doi.org/10.1007/978-3-642-46015-9_1
21. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., and Berezovski, M. Dispersive waves in microstructured solids. Int. J. Solids Struct., 2013, 50, 1981–1990.
https://doi.org/10.1016/j.ijsolstr.2013.02.018
22. Eringen, A. C. Nonlinear Theory of Continuous Media. McGraw-Hill Book Company, New York, NY, 1962.
23. Eringen, A. C. and Maugin, G. A. Electrodynamics of Continua I. Springer, New York, NY, 1990.
https://doi.org/10.1007/978-1-4612-3226-1
24. Engelbrecht, J. Questions About Elastic Waves. Springer , Cham, 2015.
https://doi.org/10.1007/978-3-319-14791-8
25. Johnston, D. and Wu, S. M.-S. Foundations of Cellular Neurophysiology. The MIT Press, Cambridge, MA, 1995.
26. Lieberstein, H. On the Hodgkin-Huxley partial differential equation. Math. Biosci., 1967, 1(1), 45–69.
https://doi.org/10.1016/0025-5564(67)90026-0
27. Chen, H., Garcia-Gonzalez, D., and Jérusalem, A. Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Phys. Rev. E, 2019, 99(3), 032406.
https://doi.org/10.1103/PhysRevE.99.032406
28. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1(6), 445–466.
https://doi.org/10.1016/S0006-3495(61)86902-6
29. Engelbrecht, J., Peets, T., and Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol., 2018, 17(6), 1771–1783.
https://doi.org/10.1007/s10237-018-1055-2
30. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M., and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28–38.
https://doi.org/10.3176/proc.2017.4.28
31. Heimburg, T. and Jackson, A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9790–9795.
https://doi.org/10.1073/pnas.0503823102
32. Christov, C. I., Maugin, G. A., and Porubov, A. V. On Boussinesq’s paradigm in nonlinear wave propagation. Comptes Rendus Mécanique, 2007, 335(9–10), 521–535.
https://doi.org/10.1016/j.crme.2007.08.006
33. Engelbrecht, J., Tamm, K., and Peets, T. On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol., 2015, 14(1), 159–167.
https://doi.org/10.1007/s10237-014-0596-2
34. Abbott, B. C., Hill, A. V., and Howarth, J. V. The positive and negative heat production associated with a nerve impulse. Proc. R. Soc. B Biol. Sci., 148(931), 1958, 149–187.
https://doi.org/10.1098/rspb.1958.0012
35. Tasaki, I. A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR, 1988, 20(4), 251–268.
36. Kolsky, H. Stress Waves in Solids. Dover Publications, New York, NY, 1963.
37. Graff, K. F. Wave Motion in Elastic Solids. Dover Publications, New York, NY, 1975.
38. Porubov, A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore, 2003.
https://doi.org/10.1142/5238
39. Engelbrecht, J., Tamm, K., and Peets, T. Internal variables used for describing the signal propagation in axons. Contin. Mech. Thermodyn., 2020, 32(6), 1619–1627.
https://doi.org/10.1007/s00161-020-00868-2
40. Maugin, G. A. The saga of internal variables of state in continuum thermo-mechanics (1893-2013). Mech. Res. Commun., 2015, 69, 79–86.
https://doi.org/10.1016/j.mechrescom.2015.06.009
41. Maugin, G. A. Internal variables and dissipative structures. J. Non-Equilib. Thermodyn., 1990, 15(2), 173–192.
https://doi.org/10.1515/jnet.1990.15.2.173
42. Berezovski, A. and Ván, P. Internal Variables in Thermoelasticity. Springer, Cham, 2017.
https://doi.org/10.1007/978-3-319-56934-5
43. Hodgkin, A. L. The ionic basis of nervous conduction. Science, 1964, 145(3637), 1148–1154.
https://doi.org/10.1126/science.145.3637.1148
44. Maugin, G. A. and Engelbrecht, J. A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equilib. Thermodyn., 1994, 19(1), 9–23.
https://doi.org/10.1515/jnet.1994.19.1.9
45. Morris, C. and Lecar, H. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 1981, 35(1), 193–213.
https://doi.org/10.1016/S0006-3495(81)84782-0
46. Hodgkin, A. L. and Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature, 1939, 144(3651), 710–711.
https://doi.org/10.1038/144710a0
47. Appali, R., Petersen, S., and van Rienen, U. A comparision of Hodgkin-Huxley and soliton neural theories. Adv. Radio Sci., 2010, 8, 75–79.
https://doi.org/10.5194/ars-8-75-2010
48. Petrov, A. G. Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta, 2006, 568(1-2), 70–83.
https://doi.org/10.1016/j.aca.2006.01.108
49. Gross, D., Williams, W. S., and Connor, J. A. Theory of electromechanical effects in nerve. Cell. Mol. Neurobiol., 1983, 3(2), 89–111.
https://doi.org/10.1007/BF00735275
50. Terakawa, S. Potential-dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon. J. Physiol., 1985, 369(1), 229–248.
https://doi.org/10.1113/jphysiol.1985.sp015898
51. Howarth, J. V., Keynes, R. D., and Ritchie, J. M. The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol., 1968, 194(3), 745–93.
https://doi.org/10.1113/jphysiol.1968.sp008434
52. Tamm, K., Engelbrecht, J., and Peets, T. Temperature changes accompanying signal propagation in axons. J. NonEquilib. Thermodyn., 2019, 44(3), 277–284.
https://doi.org/10.1515/jnet-2019-0012
53. Heimburg, T. and Jackson, A. D. Thermodynamics of the nervous impulse. In Structure and Dynamics of Membranous Interfaces (Kaushik, N., ed.). John Wiley & Sons, 2008, 318–337.
54. Andersen, S. S., Jackson, A. D., and Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol., 2009, 88(2), 104–113.
https://doi.org/10.1016/j.pneurobio.2009.03.002
55. Bressloff, P. C. Waves in Neural Media. Springer, New York, NY, 2014.
https://doi.org/10.1007/978-1-4614-8866-8
56. Ermentrout, G. B. and Terman, D. H. Mathematical Foundations of Neuroscience. Springer, New York, NY, 2010.
https://doi.org/10.1007/978-0-387-87708-2
57. Garfinkel, A., Shevtsov, J., and Guo, Y. Modeling Life. Springer, Cham, 2017.
https://doi.org/10.1007/978-3-319-59731-7
58. Nelson, P. C., Radosavljevic, M., and Bromberg, S. Biological Physics: Energy, Information, Life. W.H. Freeman and Company, New York, NY, 2003.
59. McCulloch, A. D. and Huber, G. Integrative biological modelling in silico. In ‘In Silico’ Simul. Biol. Process. (Bock, G. and Goode, J. A., eds). John Wiley & Sons, Chichester, 2002, 4–25.
https://doi.org/10.1002/0470857897.ch2
60. Engelbrecht, J., Tamm, K., and Peets, T. On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes. Philos. Mag., 2017, 97(12), 967–987.
https://doi.org/10.1080/14786435.2017.1283070
61. Peets, T., Tamm, K., Simson, P., and Engelbrecht, J. On solutions of a Boussinesq-type equation with displacementdependent nonlinearity: a soliton doublet. Wave Motion, 2019, 85, 10–17.
https://doi.org/10.1016/j.wavemoti.2018.11.001
62. Peets, T. and Tamm, K. Mathematics of nerve signals. In Applied Wave Mathematics II (Berezovski, A. and Soomere, T., eds), Vol. 6, Springer, Cham, 2019, 207–238.
https://doi.org/10.1007/978-3-030-29951-4_10
63. Engelbrecht, J., Tamm, K., and Peets, T. Modelling of processes in nerve fibres at the interface of physiology and mathematics. Biomech. Model. Mechanobiol., 2020, 19, 2491–2498.
https://doi.org/10.1007/s10237-020-01350-3
64. Bennett, M. V. Electrical synapses, a personal perspective (or history). Brain Res. Rev., 2000, 32(1), 16–28.
https://doi.org/10.1016/S0165-0173(99)00065-X
65. Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H., and Bruzzone, R. Electrical synapses: a dynamic signaling system that shapes the activity of neuronal networks. – BBA Biomembr., 2004, 1662(1–2), 113–137.
https://doi.org/10.1016/j.bbamem.2003.10.023
66. Mueller, J. K. and Tyler, W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol., 2014, 11(5), 051001.
https://doi.org/10.1088/1478-3975/11/5/051001
67. Engelbrecht, J., Tamm, K., and Peets, T. Modeling of complex signals in nerve fibers. Med. Hypotheses, 2018, 120, 90–95.
https://doi.org/10.1016/j.mehy.2018.08.021
68. Bini, D., Cherubini, C., and Filippi, S. Heat transfer in Fitzhugh-Nagumo models. Phys. Rev. E, 2006, 74(4), 041905.
https://doi.org/10.1103/PhysRevE.74.041905
69. Scott, A. Nonlinear Science. Emergence and Dynamics of Coherent Structures. Oxford University Press, 1999.
70. Pietruszka, M., Stolarek, J., and Pazurkiewicz-Kocot, K. Time evolution of the action potential in plant cells. J. Biol. Phys, 1997, 23(4), 219–232.
https://doi.org/10.1023/A:1005020826000
71. El Hady, A. and Machta, B. B. Mechanical surface waves accompany action potential propagation. Nat. Commun., 2015, 6, 6697.
https://doi.org/10.1038/ncomms7697
72. Jérusalem, A., García-Grajales, J. A., Merchán-Pérez, A., and Peña, J. M. A computational model coupling mechanics and electrophysiology in spinal cord injury. Biomech. Model. Mechanobiol., 2014, 13(4), 883–896.
https://doi.org/10.1007/s10237-013-0543-7
73. Rvachev, M. M. On axoplasmic pressure waves and their possible role in nerve impulse propagation. Biophys. Rev. Lett., 2010, 5(2), 73–88.
https://doi.org/10.1142/S1793048010001147
74. Kappler, J., Shrivastava, S., Schneider, M. F., and Netz, R. R. Nonlinear fractional waves at elastic interfaces. Phys. Rev. Fluids, 2017, 2(11), 1–18.
https://doi.org/10.1103/PhysRevFluids.2.114804
75. Mussel, M. and Schneider, M. F. Similarities between action potentials and acoustic pulses in a van der Waals fluid. Sci. Rep., 2019, 9(1), 1–10.
https://doi.org/10.1038/s41598-019-38826-x
76. Mussel, M. and Schneider, M. F. It sounds like an action potential: unification of electrical, chemical and mechanical aspects of acoustic pulses in lipids. J. R. Soc. Interface, 2019, 16(151), 20180743.
https://doi.org/10.1098/rsif.2018.0743
77. Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London, 2010.
https://doi.org/10.1142/p614
78. Kotthaus, J. P. A mechatronics view at nerve conduction. arXiv:1909.06313 [physics.bio-ph], 2019.
79. Holland, L., de Regt, H. W., and Drukarch, B. Thinking about the nerve impulse: the prospects for the development of a comprehensive account of nerve impulse propagation. Front. Cell. Neurosci., 2019, 13(208), 1–12.
https://doi.org/10.3389/fncel.2019.00208
80. Hall, C. W. Laws and Models: Science, Engineering, and Technology. CRC Press, Boca Raton, 1999.
https://doi.org/10.1201/9781420050547
81. Heimburg, T. The important consequences of the reversible heat production in nerves and the adiabaticity of the action potential. arXiv:2002.06031v1 [physics.bio-ph], 2020.
https://doi.org/10.1016/j.pbiomolbio.2020.07.007
82. Wooley, J. C. and Lin, H. S. (eds). Catalyzing Inquiry at the Interface of Computing and Biology. National Research Council, The National Academies Press, Washington, D.C., 2005.
83. Goriely, A., Geers, M. G., Holzapfel, G. A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S., et al. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol., 2015, 14(5), 931–965.
https://doi.org/10.1007/s10237-015-0662-4
84. Dyson, F. A meeting with Enrico Fermi. How one intuitive physicist rescued a team from fruitless research. Nature, 2004, 427(6972), 297.
https://doi.org/10.1038/427297a