The aim of the current study is to investigate the dissolution process of alkaline-earth metal sulfides SrS and CaS in ultrapure MilliQ water and define the size dependence of the formed particles on the amount of added salt due to the similarity of their chemical properties (e.g. a cubic crystal structure, ion radius). The pH values of SrS and CaS aqueous solutions increased when an additional amount of salt was added into these closed equilibrium systems, as the average quantity and size of the formed particles rose respectively in the measured range of 10−1500 nm. The nanoparticles (detected by Nanosight® LM10) appeared in the prepared aqueous solutions containing 0.092 ± 0.01 mM of SrS(s) (pH = 9.97 ± 0.02) and 0.097 ± 0.01 mM of CaS(s) (pH = 9.94 ± 0.02) or above the aforesaid salt amount, which was about 18 times lower concentration than our previously determined values for [SrS] = 1.671 mM and [CaS] = 1.733 mM (pH = 11.22 ± 0.04). Up to these amounts of added salt in the closed equilibrium systems of H2O–SrS and H2O–CaS, all particles had dissolved due to the better solubility of smaller ones, which is related to their larger specific surface area, and thus, to the increase in solubility. Therefore, this principle allows to calculate the value of the solubility product (KSP) for nanoscale particles in different equilibrium systems by using the nanoparticle tracking analysis (NTA) method.
1. Holleman, A. F., Wiberg, E., and Wiberg, N. Inorganic Chemistry, 1st ed. Academic Press, San Diego, 2001.
2. Douglas, B. E., McDaniel, D. H., and Alexander J. J. Concepts and models of inorganic chemistry, 2nd ed. John Wiley and Sons, Inc., New York, 1983.
3. Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics, 87th ed. CRC Press, Boca Raton, FL, 2006.
4. LeBlanc, S. E., and Fogler, H. S. Dissolution of powdered minerals: the effect of polydispersity. AIChE J., 1989, 35(5), 865–868.
https://doi.org/10.1002/aic.690350520
5. MacMillan, J. P., Park, J. W., Gerstenberg, R., Wagner, H., Köhler, K., and Wallbrecht, P. Strontium and Strontium Compounds. Wiley Online Library, 2000,
https://doi.org/10.1002/14356007.a25_321
6. Uiga, K., Tenno, T., Zekker, I., and Tenno, T. Dissolution modeling and potentiometric measurements of the SrS–H2O–gas system at normal pressure and temperature at salt concentrations of 0.125–2.924 mM. J. Sulfur Chem., 2011, 32(2), 137–149.
https://doi.org/10.1080/17415993.2011.551937
7. Patnaik, P. Handbook of Inorganic chemicals. The McGraw-Hill Companies, Inc., USA, 2003.
8. Zvimba, J. N., Mulopo, J., De Beer, M., Bologo, L., and Mashego, M. The dissolution characteristics of calcium sulfide and utilization as a precipitation agent in acidic wastewater effluent treatment. Water Sci. Technol., 2011, 63(12), 2860–2866,
https://doi.org/10.2166/wst.2011.599
9. Zekker, I., Tenno, T., Selberg, A., and Uiga, K. Dissolution modeling and experimental measurement of CaS-H2O binary system. Chin. J. Chem., 2011, 29(11), 2327–2336.
https://doi.org/10.1002/cjoc.201180399
10. Mölder, L., Elenurm, A., and Tamvelius, H. Sulphur compounds in a hydraulic ash-disposal system. Proc. Estonian Acad. Sci. Chem., 1995, 44(2–3), 207–211.
11. Yongsiri, C., Hvitved-Jacobsen, T., Vollertsen, J., and Tanaka, N. Introducing the emission process of hydrogen sulfide to a sewer process model (WATS). Water Sci. Technol., 2003, 47(4), 85–92.
https://doi.org/10.2166/wst.2003.0227
12. Hiemenz, P. C. and Rajagopalan, R. Principles of Colloid and Surface Chemistry, 3rd ed. CRC Press, Boca Raton, FL, 1997.
13. Chizhik, V. I., Egorov, A. V., Pavlova, M. S., Egorova, M. I., and Donets, A. V. Structure of hydration shell of calcium cation by NMR relaxation, Car-Parrinello molecular dynamics and quantum-chemical calculations. J. Mol. Liq., 2016, 224(Part A), 730–736.
https://doi.org/10.1016/j.molliq.2016.10.035
14. Luz, E. P. C. G., Borges, M. F., Andrade, F. K., Rosa, M. F., Infantes-Molina, A., Rodríguez-Castellón, E., and Vieira, R. S. Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose, 2018, 25, 6661–6679.
https://doi.org/10.1007/s10570-018-2008-8
15. Sennett, P. and Olivier, J. P. Colloidal dispersions, electrokinetic effects, and the concept of zeta potential. Ind. Eng. Chem. 1965, 57(8), 32–50.
https://doi.org/10.1021/ie50668a007
16. Zumdahl, S. S. Chemical Principles. 2nd ed. D. C. Heath and Co., Lexington, MA, 1995.
17. Mullin, J. W. Crystallization, 4th ed. Butterworth-Heinemann, Oxford, 2001.
18. Tenno, T., Uiga, K., Mashirin, A., Zekker, I., and Rikmann, E. Modeling closed equilibrium systems of H2O–dissolved CO2–solid CaCO3. J. Phys. Chem. A., 2017, 121(16), 3094–3100.
https://doi.org/10.1021/acs.jpca.7b00237
19. Tenno T., Rikmann, E., Zekker, I., and Tenno T. Modelling the solubility of sparingly soluble compounds depending on their particles size. Proc. Estonian Acad. Sci., 2018, 67(3), 300–302.
https://doi.org/10.3176/proc.2018.3.10
20. Yan, H., Wang, X.-S. and Zhu, R.-Z. Derivation of the Kelvin Equation. Acta Phys.Chim. Sin., 2009, 25(4), 640–644.
21. Wu, W. and Nancollas, G. H. A new understanding of the relationship between solubility and particle size. J. Solution Chem., 1998, 27(6), 521–531.
https://doi.org/10.1023/A:1022678505433
22. Wright, M. Nanoparticle Tracking Analysis for the Multiparameter Characterization and Counting of Nanoparticle Suspensions. In Nanoparticles in Biology and Medicine. Methods in Molecular Biology (Soloviev, M., ed.), vol. 906, Human Press, Totowa, NJ, 2012, 511–524.
https://doi.org/10.1007/978-1-61779-953-2_41
23. Maguire, C. M., Rösslein, M., Wick, P., and Prina-Mello, A. Characterisation of particles in solution – a perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater., 2018, 19(1), 732–745.
https://doi.org/10.1080/14686996.2018.1517587
24. Hole, P., Sillence, K., Hannell, C., Maguire, C. M., Roesslein, M., Suarez, G. et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J. Nanopart. Res., 2013, 15(12), 2101–2112.
https://doi.org/10.1007/s11051-013-2101-8
25. Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W. G., and Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. Extracell. Vesicles, 2013, 2(1).
https://doi.org/10.3402/jev.v2i0.19671
26. Filipe, V., Hawe, A., and Jiskoot, W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of anoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796–810.
https://doi.org/10.1007/s11095-010-0073-2
27. Steinhauser, M. O. and Hiermaier, S. A review of computational methods in materials science: examples from shock-wave and polymer physics. Int. J. Mol. Sci., 2009, 10(12), 5135–5216.
https://doi.org/10.3390/ijms10125135
28. Young, R. O. Colloids and colloidal systems in human health and nutrition. Int. J. Complement. Altern. Med., 2016, 3(6), https://doi.org/10.15406/ijcam.2016.03.00095
29. Du, S., Kendall, K., Morris, S., and Sweet, C. Measuring number-concentrations of nanoparticles and viruses in liquids on-line. J. Chem. Technol. Biotechnol., 2010, 85(9), 1223–1228.
https://doi.org/10.1002/jctb.2421
30. Röding, M., Zagato, E., Remaut, K., and Braeckmans, K. Approximate Bayesian computation for estimating number concentrations of monodisperse nanoparticles in suspension by optical microscopy. Phys. Rev. E, 2016, 93(6).
https://doi.org/10.1103/PhysRevE.93.063311
31. Parsons, M. E. M., McParland, D., Szklanna, P. B., Guang, M. H. Z., O’Connell, K., O’Connor, H. D. et al. A protocol for improved precision and increased confidence in nanoparticle tracking analysis concentration measurements bet- ween 50 and 120 nm in biological fluids. Front Cardiovasc. Med., 2017, 4(68).
https://doi.org/10.3389/fcvm.2017.00068