The EST (Elements by a System of Transfer equations) method offers exact solutions for various vibration problems of trusses, beams and frames. The method can be regarded as an improved or modified transfer matrix method where the roundoff errors generated by multiplying transfer arrays are avoided. It is assumed that in a steady state a beam will vibrate with the circular frequency of an excitation force. The universal equation of elastic displacement (4th order differential equation) is described as a system of first order differential equations in matrix form. For the differential equations, the compatibility conditions of a beam element displacements at joint serve as essential boundary conditions. As the natural boundary conditions at joints, the equilibrium equations of elastic forces of beam elements are considered. At the supports, restrictions to displacements (support conditions) have been applied. For steady-state forced vibration, the phenomena of dynamic vibration absorption near the saddle points are observed, and the response curves for displacement amplitude and elastic energy are calculated.
* A sequel to "Modified transfer matrix method for steady-state forced vibration: a system of bar elements [1]
1. Lahe, A., Braunbrück, A., and Klauson, A. Modified transfer matrix method for steady-state forced vibration: a system of bar elements. Proc. Estonian Acad. Sci., 2020, 69(2), 143–161.
https://doi.org/10.3176/proc.2020.2.06
2. Pestel, E. C. and Leckie, F. A. Matrix Method in Elastomechanics. McGraw-Hill, New York, 1963.
3. Den Hartog, J. P. Mechanical Vibrations, 4th Edition. Dover Publications, Inc., New York, 1985.
4. Pani, S., Senapati, K., Patra, K. C., and Nath, P. Review of an effective dynamic vibration absorber for a simply supported beam and parametric optimization to reduce vibration amplitude. Int. J. Eng. Res. Appl., 2017, 7(7), Part III, 49–77.
https://doi.org/10.9790/9622-0707034977
5. He, B., Rui, X., and Zhang, H. Transfer matrix method for natural vibration analysis of tree system. Math. Probl. Eng., 2012, ArticleID393204.
https://doi.org/10.1155/2012/393204
6. Lahe, A. The transfer matrix and the boundary element method. Proc. Estonian Acad. Sci. Eng., 1997, 3(1), 3–12.
http://books.google.ee/books?id=ghco7svk5T4C&pg=PA3&lpg=PA3&dq=Andres+Lahe&source=bl&ots=
3SFfo4UCES&sig=%5FXLUez-SfW2FVYGRx8v2LVm16V8&hl=et&ei=YQaFTMeIEoWcOOyCyNwP&sa=
X&oi=book%5Fresult&ct=result&resnum=5&ved=0CB0Q6AEwBDgK#v=onepage&q=Andres%20Lahe&f=false
7. Lahe, A. Ehitusmehaanika. Tallinn University of Technology Press, Tallinn, 2012 (in Estonian).
https://digi.lib.ttu.ee/i/?793
8. Lahe, A. The EST Method: Structural Analysis. Tallinn University of Technology Press, Tallinn, 2014.
https://digi.lib.ttu.ee/i/?1717
9.Lahe, A. Varrassüsteemide võnkumine. EST-meetod. Tallinn University of Technology Press, Tallinn, 2018 (inEstonian). https://digi.lib.ttu.ee/i/?9708
10. Krätzig, W. B., Harte, R., Meskouris, K., and Wittek, U. Tragwerke 1. Theorie und Berechnungsmethoden statisch bestimmter Stabtragwerke. Springer-Verlag, Berlin, Heidelberg, 2010.
https://doi.org/10.1007/978-3-662-46118-1
11. Argyris, J. H. and Mlejnek, H.-P. Dynamics of Structures, Vol. 5. Elsevier Science Publishers B.V., North-Holland, 1991.
12. Haberman, R. Elementary Applied Partial Differential Equations. Prentice-Hall International, New Jersey, 1983.
13. Yang, S. Modal identification of linear time periodic systems with applications to Continuous-Scan Laser Doppler Vibrometry. PhD thesis. University of Wisconsin-Madison, Wisconsin, 2013.
14. Kiselev, V. A. Special Course. Dynamics and Stability of Structures. Strojizdat, Moscow, 1964 (in Russian).
15. Babakov, I. M. The theory of vibrations, 2nd Edition. Nauka, Moscow, 1965 (in Russian).
16. Karnovsky, I. A. and Lebed, O. Advanced Methods of Structural Analysis. Springer, Boston, 2010.
https://doi.org/10.1007/978-1-4419-1047-9
17. Karnovsky, I. A. and Lebed, E. Theory of Vibration Protection. Springer International Publishing, Cham, 2016.
https://doi.org/10.1007/978-3-319-28020-2
18. Kang, B. Exact transfer function analysis of distributed parameter systems by wave propagation techniques. In Recent Advances in Vibrations Analysis (Baddour, N., ed.). IntechOpen, Rijeka, 2011, 1–27.
https://doi.org/10.5772/22379
19. Allen, M. S., Sracic, M. W., Chauhan, S., and Hansen, M. H. Output-only modal analysis of linear time periodic systems with application to wind turbine simulation data. In Structural Dynamics and Renewable Energy (Proulx, T., ed.). Springer, New York, 2011, 361–374. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY, 2011.
https://doi.org/10.1007/978-1-4419-9716-6_33
20. Wereley, N. M. Analysis and control of linear periodically time varying systems. PhD thesis. Massachusetts Institute of Technology, Cambridge, 1991.
https://dspace.mit.edu/handle/1721.1/13761
21. Hagedorn, P. and DasGupta, A. Vibrations and Waves in Continuous Mechanical Systems. John Wiley & Sons, Chichester, 2007.
https://doi.org/10.1002/9780470518434
22. Farlow, S. J. Partial Differential Equations for Scientists and Engineers. John Wiley & Sons, New York, 1993.
23. Curtain, R. and Morris, K. Transfer functions of distributed parameter systems: A tutorial. Automatica, 2009, 45(5), 1101–1116.
https://doi.org/10.1016/j.automatica.2009.01.008
24. Song, J., Huang, Q.-A. System-Level modeling of packaging effects of MEMS devices. In System-Level Modeling of MEMS (Bechtold, T., Schrag, G., and Feng, L., eds). Wiley-VCH Verlag GmbH & Co. KGaA, 2013, 147–160.
https://doi.org/10.1002/9783527647132.ch6
25. Pilkey, W. D. and Wunderlich, W. Mechanics of Structures: Variational and Computational Methods. CRC Press, Boca Raton, 1994.
26. Lahe, A., Braunbrück, A., and Klauson, A. An exact solution of truss vibration problems. Proc. Estonian Acad. Sci., 2019, 68(3), 244–263.
https://doi.org/10.3176/proc.2019.3.04
27. Avcar, M. Free vibration analysis of beams considering different geometric characteristics and boundary conditions. Int. J. Mech. Appl., 2014, 3(3), 94–100.
https://doi.org/10.5923/j.mechanics.20140403.03
28. Rosenberg, R. Steady-state forced vibrations. Int. J. Non-Lin. Mech., Elsevier, 1966, 1(2), 95–108.
https://doi.org/10.1016/0020-7462(66)90023-0
29. Sracic, M. W. A new experimental method for nonlinear system identification based on linear time periodic approximations. PhD thesis. University of Wisconsin-Madison, Wisconsin, 2011.
30. Allen, M. S., Kuether, R. J., Deaner, B., and Sracic, M. W. A numerical continuation method to compute nonlinear normal modes using modal reduction. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 23–26, 2012. AIAA, 2012, 11, 9548–9567.
https://doi.org/10.2514/6.2012-1970
31. Kozień, M. S. Analytical Solutions of Excited Vibrations of a Beam with Application of Distribution. Acta Phys. Pol. A, 2013, 123(6), 1029–1033.
https://doi.org/10.12693/APhysPolA.123.1029
32. Henderson, J. P. Vibration analysis of curved skin-stringer structures having tuned elastomeric dampers. PhD thesis. School of The Ohio State University, 1972.
https://apps.dtic.mil/docs/citations/AD0758220
33. Abu-Hilal, M. Forced vibration of Euler-Bernoulli beams by means of dynamic Green functions. J. Sound Vib., 2003, 267(2), 191–207.
https://doi.org/10.1016/S0022-460X(03)00178-0
34. Langtangen, H. P. and Linge, S. Vibration ODEs. In Finite Difference Computing with PDEs. Texts in Computational Science and Engineering. Springer, Cham, 2017, 1–92.
https://doi.org/10.1007/978-3-319-55456-3_1
35. Kartofelev, D. Nonlinear sound generation mechanisms in musical acoustics. PhD thesis. Tallinn University of Technology, Tallinn, 2014.
https://digi.lib.ttu.ee/i/?1219
36. Irofti, D., Boussaada, I., and Niculescu, S.-I. Geometric vs. algebraic approach: A study of double imaginary characteristic roots in time-delay systems. IFAC-PapersOnLine, 2017, 59(1), 1310–1315.
https://doi.org/10.1016/j.ifacol.2017.08.123
37. Irofti, D., Boussaada, I., and Niculescu, S.-I. Some insights into the migration of double imaginary roots under small deviation of two parameters. Automatica, 2018, 88, 91–97.
https://doi.org/10.1016/j.automatica.2017.11.015
38. Sandberg, H., Möllerstedt, E., and Bernhardsson, B. Frequency-domain analysis of linear time-periodic systems. IEEE Trans. Autom. Control, 50(12), 1971–1983, 2005.
https://doi.org/10.1109/TAC.2005.860294
39. Blin, N., Riedinger, P., Daafouz, J., Grimaud, L., and Feyel, P. A comparison of harmonic modeling methods with application to control of switched systems with active filtering. In Proceedings of the 18th European Control Conference (ECC), Naples, Italy, June 25–28, 2019. IEEE, 2019, 4198–4203.
https://doi.org/10.23919/ECC.2019.8796168
40. Wereley, N. M. and Hall, S. R. Frequency response of linear time periodic systems. In Proceedings of the 29th IEEE Confer- ence on Decision and Control, Honolulu, HI, USA, December 5–7, 1990. IEEE, 1991, 3650–3655.
https://doi.org/10.1109/CDC.1990.203516
41. Siddiqi, A. Identification of the Harmonic Transfer Functions of a Helicopter Rotor. MSc thesis. Massachusetts Institute of Technology, Cambridge, 2001.
https://dspace.mit.edu/handle/1721.1/8900
42. Tcherniak, D., Yang, S., and Allen, M. S. Experimental characterization of operating bladed rotor using harmonic power spectra and stochastic subspace identification. In Proceedings of the 26th International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, September 15–17, 2014 (Sas, P., Moens, D., and Denayer, H., eds), 4421–4436.
43. Gbur, G. J. Singular Optics. CRC Press, Boca Raton, 2016.
https://doi.org/10.1201/9781315374260
44. Freund, I. and Shvartsman, N. Wave-field phase singularities: The sign principle. Phys. Rev. A, 1994, 50(6), 5164–5172.
https://doi.org/10.1103/PhysRevA.50.5164
45. Dias, C. A. N. General exact harmonic analysis of in-plane timoshenko beam structures. Lat. Am. J. Solids Struct., 2014, 11(12).
https://doi.org/10.1590/S1679-78252014001200004
46. Yavari, A., Sarkani, S., and Moyer, E. T. Jr. On applications of generalized functions to beam bending problems. Int. J. Solids Struct., 2000, 37(40), 5675–5705.
https://doi.org/10.1016/S0020-7683(99)00271-1
47. Dong, Y. and Liu, J. Exponential stabilization of uncertain nonlinear time-delay systems. Adv. Difference Equations, 2012, 180.
https://doi.org/10.1186/1687-1847-2012-180
48. Gu, K., Irofti, D., Boussaada, I., and Niculescu, S. Migration of double imaginary characteristic roots under small deviation of two delay parameters. In Proceedings of the 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, December 15–18, 2015. IEEE, 2016, 6410–6415.
https://doi.org/10.1109/CDC.2015.7403229
49. Yin, H. and Tao, R. Improved transfer matrix method without numerical instability. Europhys. Lett., 2008, 84(5).
https://doi.org/10.1209/0295-5075/84/57006
50. Kadisov, G. M. Dynamics and Stability of Structures. Litres, St. Petersburg, 2015.
https://books.google.ee/books?id=e5QoCwAAQBAJ
51. Karnovsky, I. A. Theory of Arched Structures: Strength, Stability, Vibration. Springer-Verlag, NewYork, 2012.
https://doi.org/10.1007/978-1-4614-0469-9
52. Jürgenson, A. Tugevusõpetus. Valgus, Tallinn, 1985 (in Estonian).
http://digi.lib.ttu.ee/i/?472
53. Structural Dynamics of Linear Elastic Single-Degree-of-Freedom (SDOF) Systems. Instructional Material Complementing FEMA 451, Design Examples.
http://www.ce.memphis.edu/7119/PDFs/FEAM_Notes/Topic03-StructuralDynamicsofSDOFSystemsNotes.pdf
54. Crowell, B. Mechanics. Light and Matter, Fullerton, California, 2019.
http://www.lightandmatter.com/mechanics/
55. Wen-Xi, H., Xiao, X. Y., Yun-Ling, J., and Dong-Fang, Y. Automatic segmentation method for voltage sag detection and characterization. In Proceedings of the 18th International Conference on Harmonics and Quality of Power (ICHQP), Ljubljana, Slovenia, May 13–16, 2018. IEEE, 2018, 1–5.
https://doi.org/10.1109/ICHQP.2018.8378821
56. Murray, R. M., Li, Z., and Sastry, S. S. A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton– London–NewYork–Washington,D.C.,1994.
https://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf
57. Smirnov, A. F., Aleksandrov, A. V., Lashchenikov, B. Ya., and Shaposhnikov, N. N. Structural Mechanics. Dynamics and Stability of Structures. Strojizdat, Moscow, 1984 (in Russian).
58. Stepanov, V. V. Course of Differential Equations, 8th Edition. Fizmatgiz, Moscow, 1959 (in Russian).
59. Gajic, Z. Linear Dynamic Systems and Signals. Prentice Hall, Upper Saddle River, 2003.
60. Yang, B. Stress, Strain, and Structural Dynamics: An Interactive Handbook of Formulas. Solutions and MATLAB Toolboxes. Elsevier Academic Press, Oxford, 2005.
https://doi.org/10.5589/q05-010
61.Cosşkun, S. B., Atay, M. T., and Öztürk, B. Transverse Vibration Analysis of Euler-Bernoulli Beams Using Analytical Approximate Techniques. In Advances in Vibration Analysis Research (Ebrahimi, F., ed.). IntechOpen, Rijeka, 2011, 1–22.
https://doi.org/10.5772/15891
62. Walker, L. R. Finite element solution: nonlinear flapping beams for use with micro air vehicle design. MSc thesis. Air Univer- sity. Air Force Institute of Technology, Ohio, 2007.
http://docplayer.net/129805126-Air-force-institute-of-technology.html
63. Stokey, W. F. Vibration of systems having distributed mass and elasticity. In Harris’ Shock and Vibration Handbook, 5th Edition (Harris, C. M. and Piersol, A. G., eds). McGraw-Hill, New York–Chicago–San Francisco, 2002.
64. Andronov, A. A., Vitt, A. A., and Khaikin, S. E. Theory of Oscillator. Pergamon Press, Oxford–London–Edinburg–New York–Toronto–Paris–Frankfurt, 1966.
https://doi.org/10.1002/zamm.19670470720
65. Zilletti, M., Elliott, S. J., and Rustighi, E. Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib., 2012, 331(18), 4093–4100.
http://dx.doi.org/10.1016/j.jsv.2012.04.023