ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Physio-chemical characteristics of strawberry and raspberry: comparison of local and commercial cultivars with their wild relatives in Estonia; pp. 197–207
PDF | 10.3176/proc.2020.3.03

Authors
Mailis Vinogradov, Liina Arus, Ain Raal, Andres Meos, Marge Starast
Abstract

The chemical composition of old local breeds, wild strawberry (Fragaria vesca), and raspberry (Rubus idaeus) has not been studied enough as they may not be profitable. We compared local and commercial strawberry (Fragaria × ananassa) and raspberry (Rubus idaeus) cultivars to natural relatives. In the experiment fruit weight, pH, and chemical characteristics were investigated. In contrast with foreign cultivars, local strawberry and raspberry cultivars had smaller berries and a lower anthocyanin content, but a higher total phenolic and ascorbic acid content. The strawberry cultivar ‘Edu’ had the highest ascorbic acid and ‘Regatt-80’ the highest total phenolic content. The raspberry cultivar ‘Tomo’ had the highest quantity of ascorbic acid and ‘Alvi’ the highest total phenolic content. Due to the higher levels of these bioactive compounds, old local cultivars could be used for the production of nutrient-rich functional food. Wild relatives showed a higher value of dry matter, soluble solids, and anthocyanins than the cultivars. The content of total phenolics in raspberry cultivars and wild raspberries was statistically the same but for strawberries, a higher value was estimated for wild counterparts.

 

References

Aaby, K., Mazur, S., Nes, A., and Skrede, G. 2012. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: composition in 27 cultivars and changes during ripening. Food Chem.132(1), 86–97.
https://doi.org/10.1016/j.foodchem.2011.10.037

Ahmed, M., Anjum, M. A., Hussain, S., and Khaqan, K. 2014. Biodiversity in morphological and physico-chemical characteristics of wild raspberry (Rubus idaeus L.) germ­plasm collected from temperate region of Azad Jammu & Kashmir (Pakistan). Acta Sci. Pol., Hortorum Cultus13(4), 117–134.

Andrés-Bello, A., Barreto-Palacios, V., García-Segovia, P., Mir-Bel, J., and Martínez-Monzó, J. 2013. Effect of pH on color and tex­ture of food products. Food Eng. Rev.5(3), 158–170.
https://doi.org/10.1007/s12393-013-9067-2

Arus, L., Kikas, A., Libek, A., and Kaldmäe, H. 2008. Testing five raspberry cultivars of Estonian origin. Acta Hortic.777, January, 161–165.
https://doi.org/10.17660/ActaHortic.2008.777.22

Aslantas, R., Pirlak, L., and Güleryüz, M. 2007. The nutritional value of wild fruits from the North Eastern Anatolia Region of Turkey. Asian J. Chem.19(4), 3072–3078.

Bobinaite, R., Viškelis, P., and Venskutonis, P. R. 2012. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem.132(3), 1495–1501.
https://doi.org/10.1016/j.foodchem.2011.11.137

Estonian Weather Service. 2017. Observation data. Available at
http://www.ilmateenistus.ee/ilm/ilmavaatlused/vaatlusandmed/?lang=en (accessed 30 September 2019).

European Directorate for the Quality of Medicines & Healthcare. 2010. Ascorbic acid. In European Pharmacopoeia, 7th edn, Vol. 2. Monograph 0172011/0253, pp. 1418–1419. Council of Europe, Strasbourg.

Fan, L., Roux, V., Dubé, C., Charlebois, D., Tao, S., and Khanizadeh, S. Effect of mulching systems on fruit quality and phytochemical composition of newly developed strawberry lines. Agric. Food Sci., 2012, 21(2), 132-140. 
https://doi.org/10.23986/afsci.4765

Faostat. 2017. Crops. Available at
www.fao.org/faostat/en/#data/QC (accessed 30 September 2019).

Fredes, C., Montenegro, G., Zoffoli, J. P., Santander, F., and Robert, P. 2014. Comparación de los contenidos de fenoles totales, antocianos totales y la actividad antioxidante de frutos ricos en polifenoles que crecen en Chile. Cienc. Investig. Agrar.41(1), 49–59.
http://doi.org/10.4067/S0718-16202014000100005

Giampieri, F., Alvarez-Suarez, J. M., Cordero, M. D., Gasparrini, M., Forbes-Hernandez, T. Y., Afrin, S., Santos-Buelga, C., et al. 2017. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem.234, 464–471.
https://doi.org/10.1016/j.foodchem.2017.05.017

Gündüz, K. and Özdemir, E. 2014. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of straw­berry. Food Chem.155, 298–303.
https://doi.org/10.1016/j.foodchem.2014.01.064

Jarić, S., Popović, Z., Mačukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadžić, B., Mitrović, M., and Pavlović, P. 2007. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol.111(1), 160–175.
https://doi.org/10.1016/j.jep.2006.11.007

Kanodia, L. and Das, S. 2009. A comparative study of analgesic property of whole plant and fruit extracts of Fragaria vesca in experimental animal models. Bangladesh J. Pharmacol.4(1), 35–38.
https://doi.org/10.3329/bjp.v4i1.1049

Kelt, K., Lamp, L., and Piir, R. 1997. Puuviljad, marjad, tervis: toiteväärtus, säilitamine ja kodune töötlemine [Fruits, Berries, Health: Nutrition Value, Preservation and Home Processing]. Valgus, Tallinn (in Estonian).

Labokas, J. and Bagdonaitë, E. 2005. Phenotypic diversity of Fragaria vesca and F. viridis in Lithuania. Biologija3(3), 19–22.

Määttä-Riihinen, K. R., Kamal-Eldin, A., and Törrönen, A. R. 2004. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem.52(20), 6178–6187.
https://doi.org/10.1021/jf049450r

Maheshgowda, B. M., Madaiah, D., Dinesh Kumar, M., Shivkumar, B. S., and Ganapathi, M. 2016. Performance of strawberry (Fragaria × ananassa Duch.) genotypes for yield, quality and biochemical traits under naturally ventilated polyhouse conditions. Int. J. Trop. Agric.34(5), 23–26.

Marjanovic-Balaban, D., Grujic, S., Jasic, M., and Vujadinovic, D. 2012. Testing of chemical composition of wild berries. In Third International Scientific Symposium Agrosym (Kovačević, D., ed.), pp. 154–161. Faculty of Agriculture, University of East Sarajevo, Jahorina, Bosnia and Herzegovina.

Mazur, S. P., Nes, A., Wold, A. B., Remberg, S. F., Martinsen, B. K., and Aaby, K. 2014. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem.146, 412–422.
https://doi.org/10.1016/j.foodchem.2013.09.086

Meos, A., Zaharova, I., Kask, M., and Raal, A. 2017. Content of ascorbic acid in common cowslip (Primula veris L.) compared to common food plants and orange juices. Acta Biol. Crac. Ser. Bot.59(1), 113–120.
https://doi.org/10.1515/abcsb-2016-0020

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., and Veberic, R. 2012. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J. Food Sci.77(10), 1064–1070.
https://doi.org/10.1111/j.1750-3841.2012.02896.x

Milivojević, J., Maksimović, V., Nikolić, M., Bogdanović, J., Maletić, R., and Milatović, D. 2011. Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J. Food Qual.34(1), 1–9.
https://doi.org/10.1111/j.1745-4557.2010.00360.x

Najda, A., Dyduch-Siemińska, M., Dyduch, J., and Gantner, M. 2014. Comparative analysis of secondary metabolites contents in Fragaria vesca L. fruits. Ann. Agric. Environ. Med.21(2), 339–343. 
https://doi.org/10.5604/1232-1966.1108601

Nielsen, S. S. (ed.). 2017. Food Science Text Series: Food Analysis. 5th edition. Springer International Publishing.
https://doi.org/10.1007/978-3-319-45776-5

Oomah, B. D. and Mazza, G. 1998. Functional Foods: Biochemical and Processing Aspects. Technomic Publishing, Lancaster, PA.

Pacicco, L., Bodesmo, M., Torricelli, R., and Negri, V. 2018. A methodological approach to identify agro-biodiversity hotspots for priority in situ conservation of plant genetic resources. PLoS ONE13(6), 1–20.
https://doi.org/10.1371/journal.pone.0197709

Pieroni, A., Sõukand, R., Quave, C. L., Hajdari, A., and Mustafa, B. 2017. Traditional food uses of wild plants among the Gorani of South Kosovo. Appetite, 108, 83–92.
https://doi.org/10.1016/j.appet.2016.09.024

Polli Horticultural Research Centre. 2014-2015. Geneetilise ressursi maasika sordikollektsiooni vaatlusandmed Polli Aiandusuuringute Keskuses [Evaluations of Genetic Resources of Strawberry Cultivars’ Collection in Polli Horticultural Research Centre]. Written data protocol of strawberry cultivars’ collection. Polli, Estonia (in Estonian).

Publications Office of the European Union. 2013. Regulation (Eu) No 1305/2013 of The European Parliament and of The Council of 17 December 2013 on Support for Rural Development by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Council Regulation (EC) No 1698/2005. 2013. Available at
https://publications.europa.eu/en/publication-detail/-/publication/c973adc4-6c03-11e3-9afb-01aa75ed71a1/language-net. (accessed 30 September 2019).

Raal, A., Nisuma, K., and Meos, A. 2018. Pinus sylvestris L. and other conifers as natural sources of ascorbic acid. J. Pharm. Pharmacogn. Res.6(2), 89–95.

Rätsep, R., Moor, U., Vool, E., and Karp, K. 2015. Effect of post-harvest flame-defoliation on strawberry (Fragaria × ananassa Duch.) growth and fruit biochemical composition. Zemdirbyste102(4), 403–410.
https://doi.org/10.13080/z-a.2015.102.051

Remberg, S. F., Soønsteby, A., Aaby, K., and Heide, O. M. 2010. Influence of postflowering temperature on fruit size and chemical composition of Glen Ample raspberry (Rubus idaeus L.). J. Agric. Food Chem.58(16), 9120–9128.
https://doi.org/10.1021/jf101736q

Sõukand, R. and Kalle, R. Where does the border lie: locally grown plants used for making tea for recreation and/or healing, 1970s–1990s Estonia. J. Ethnopharmacol., 2013, 150(1), 162–174.
https://doi.org/10.1016/j.jep.2013.08.031

Wagner, C. S., De Gezelle, J., Robertson, M., Robertson, K., Wilson, M., and Komarnytsky, S. 2017. Antibacterial activity of medicinal plants from The Physicians of Myddvai, a 13th century Welsh medical manuscript. J. Ethnopharmacol.203(5), 171–181.
https://doi.org/10.1016/j.jep.2017.03.039

Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner, M. H., Reid, D. S., Schwartz, S. J., et al. (eds). 2005. Handbook of Food Analytical Chemistry: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components. John Wiley & Sons, Inc., New Jersey.
https://doi.org/10.1002/0471709085

Xie, Z., Fan, J., Charlebois, D., Roussel, D., Dubé, C., Charles, M. T., and Khanizadeh, S. 2014. Agronomic characteristics and phytochemical profiles of advanced June-bearing strawberry lines for the northern Canadian climate. Agric. Food Sci.23(1), 38–47.
https://doi.org/10.23986/afsci.8431

Zeliou, K., Papasotiropoulos, V., Manoussopoulos, Y., and Lamari, F. N. 2018. Physical and chemical quality characteristics and antioxidant properties of strawberry cultivars (Fragaria × ananassa Duch.) in Greece: assessment of their sensory impact. J. Sci. Food Agric.98(11), 4065–4073.
https://doi.org/10.1002/jsfa.8923

 

Back to Issue