ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Mapping of ACE2 binding site on SARS-CoV-2 spike protein S1: docking study with peptides; pp. 228–234
PDF | 10.3176/proc.2020.3.06

Authors
Aleksei Kuznetsov, Jaak Järv
Abstract

Among different approaches to control the COVID-19 disease, there is clear interest to develop inhibitors which block the virus interaction with the host cells and through this simple mechanism could facilitate developing medication. In this report, interaction of the virus SARS CoV-2 spike protein S1 binding site with potential antiviral peptide ligands is analysed computationally. The peptides are derived from the binding domain of the angiotensin-converting enzyme 2, which is the receptor site for this virus. These calculations reveal that although shortening of these peptides from the N terminus and C terminus reduces their docking energy on the S1 binding site, there is still a number of peptides which effectively bind to the binding site on the SARS CoV-2 spike protein S1, and thus can be used as leads for further optimization of the inhibitory effect. Finally, this may open new perspectives for working out treatments against the virus infection.

 

References

1. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., Zheng, X.-S., Zhao, K., Chen, Q.-J., Deng, F., Liu, L.-L., Yan, B., Zhan, F.-X., Wang, Y.-Y., Xiao, G.-F., and Shi, Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579, 270–273.
http://doi.org/10.1038/s41586-020-2012-7

2. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., and Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367, 1444–1448.
http://doi.org/10.1126/science.abb2762

3. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., and Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181, 894–904.
http://doi.org/10.1016/j.cell.2020.03.045

4. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., and McLellan, J. S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367, 1260–1263.
http://doi.org/10.1126/science.abb2507

5. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., and Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581, 215–220.
http://doi.org/10.1038/s41586-020-2180-5

6. Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., and Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 566–788.
http://doi.org/10.1016/j.apsb.2020.02.008

7. Han, Y. and Král, P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 2020, 14(4), 5143–5147.
http://doi.org/10.1021/acsnano.0c02857

8. Li, Y., Zhang, Z., Yang, L., Lian, X., Xie, Y., Li, S., Xin, S., Cao, P., and Lu, J. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience, 2020, 23, 101160.
http://doi.org/10.1016/j.isci.2020.101160

9. Trott, O. and Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455–461.
http://doi.org/10.1002/jcc.21334
PMID: 19499576; PMCID: PMC3041641
10. Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435–447.
https://doi.org/10.1021/ct700301q

11. Oostenbrink, C., Villa, A., Mark, A. E., and van Gunsteren, W. F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656–1676.
http://doi.org/10.1002/jcc. 20090

12. Berendsen, H. J. C., Grigera, J. R., and Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem., 1987, 91(24), 6269–6271.
https://doi.org/10.1021/j100308a038

13. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., and Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684–3690.
https://doi.org/10.1063/1.448118

14. Parrinello, M. and Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182–7190.
http://doi.org/10.1063/1.328693

15. Darden, T., York, D., and Pedersen, L. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 1993, 98(12), 10089.
http://doi.org/10.1063/1.464397

16. Hess, B., Bekker, H., Berendsen, H. J. C., and Fraaije, J. G. E. M. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem., 1998, 18(12), 1463–1472.
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H

17. Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., Stahl, M., Leopoldi, A., Garreta, E., Hurtado Del Pozo, C., Prosper, F., Romero, J. P., Wirnsberger, G., Zhang, H., Slutsky, A. S., Conder, R., Montserrat, N., Mirazimi, A., and Penninger, J. M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020, 181(4), 905–913.
http://doi.org/10.1016/j.cell.2020.04.004

18. Sun, Z., Yan, Y. N., Yang, M., and Zhang, J. Z. H. Interaction entropy for protein-protein binding. J. Chem. Phys., 2017, 146(12), 124124. 
http://doi.org/10.1063/1.4978893

 
Back to Issue