The ingestion of microplastics has been recorded in hundreds of species. The ingestion rate and degree of impact is species-specific and depends on food preferences, foraging behaviour, and plastic pollution of the area. Currently there is a large knowledge gap regarding ingestion of marine litter by invertebrates in brackish water bodies. Therefore, experiments were conducted to investigate microplastics uptake and potential accumulation in the digestive system of the Harris mud crab Rhithropanopeus harrisii. Effects of microplastics on the growth of crabs were also tested. The results show that R. harrisii consume microplastics together with food, only plastic fragments too large for the digestion system were removed by crabs. The effect and duration of passage of plastic are not consistent and depend on the size and type of plastic. Microplastic fragments (<0.25 mm) ingested by crab were continuously egested while knotted fibres may accumulate in the stomach. The crabs fed with plastic supplements lost weight or had lower weight increase compared to control group after two-month treatment. However, the differences between treatments were not statistically significant. For the first time, occurrence of plastic in the digestive system of crabs collected from the natural habitats of Pärnu Bay (NE Baltic Sea, Estonia) was studied. Among all the crabs examined, 5% of specimens were found with fibres in their stomach assimilated prior to their capture from nature.
Aarnio, K., Törnroos, A., Björklund, C., and Bonsdorff, E. Food web positioning of a recent coloniser: the North American Harris mud crab Rhithropanopeus harrisii (Gould, 1841) in the northern Baltic Sea. Aquat. Invasions, 2015, 10(4), 399-413.
https://doi.org/10.3391/ai.2015.10.4.04
Barnes, D. K. A., Galgani, F., Thompson, R. C., and Barlaz, M. Accumulation and fragmentation of plastic debrids in global environments. Philos. Trans. R. Soc. B, 2009, 364(1526), 1984-1998.
https://doi.org/10.1098/rstb.2008.0205
Beer, S., Garm, A., Huwer, B., Dierking, J., and Nielsen, T. G. No increase in marine microplastic concentration over the last three decades - A case study from the Baltic Sea. Sci. Total Environ., 2018, 621, 1272-1279.
https://doi.org/10.1016/j.scitotenv.2017.10.101
Bråte, I. L. N., Huwer, B., Thomas, K. V., Eidsvoll, D. P., Halsband, C., Almroth, B. C., and Lusher, A. Micro- and macro-plastics in marine species from Nordic waters. TemaNord, 2017, 549.
https://doi.org/10.6027/TN2017-549
Bråte, I. L. N., Hurley, R., Iversen, K., Beyer, J., Thomas, K. V., Steindal, C. C., Green, N. W., Olsen, M., and Lusher, A. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut., 2018, 243, 383-393.
https://doi.org/10.1016/j.envpol.2018.08.077
Brennecke, D., Ferreira, E. C., Costa, T. M. M., Appel, D., da Gama, B. A. P., and Lenz, M. Ingested microplastics (>100 µm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar. Pollut. Bull., 2015, 96(1-2), 491-495.
https://doi.org/10.1016/j.marpolbul.2015.05.001
Browne, M. A., Crump, P., Niven, S. J., Teuten, E. L., Tonkin, A., Galloway, T., and Thompson, R. Accumulations of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol., 2011, 45(21), 9175-9179.
https://doi.org/10.1021/es201811s
Castejón D., Ribes, E., Durfort, M., Rotllant, G., and Guerao, G. Foregut morphology and ontogeny of the mud crab Dyspanopeus sayi (Smith, 1869) (Decapoda, Brachyura, Panopeidae). Arthropod Struct. Dev., 2015, 44(1), 33-41.
https://doi.org/10.1016/j.asd.2014.09.005
Chubarenko, I., Bagaev, A., Zobkov, M., and Esiukova, E. On some physical and dynamical properties of microplastic particles in marine environment. Mar. Pollut. Bull., 2016, 108(1-2), 105-112.
https://doi.org/10.1016/j.marpolbul.2016.04.048
Cole, M., Lindeque, P., Fileman, E., Halsband, C., and Galloway, T. S. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ. Sci. Technol., 2015, 49(2), 1130-1137.
https://doi.org/10.1021/es504525u
Czerniejewski, P. and Rybczyk, A. Body weight, morphometry, and diet of the mud crab, Rhithropanopeus harrisii tridentatus (Maitland, 1874) in the Odra estuary, Poland. Crustaceana, 2008, 81(11), 1289-1299.
https://doi.org/10.1163/156854008X369483
de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L., and Futter, M. N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Sci. Total Environ., 2018, 645, 1029-1039.
https://doi.org/10.1016/j.scitotenv.2018.07.207
De Witte, B., Devriese, L., Bekaert, K., Hoffman, S., Vandermeersch, G., Cooreman, K., and Robbens, J. Quality assessment of the blue mussel (Mytilus edulis): comparison between commercial and wild types. Mar. Pollut. Bull., 2014, 85(1), 146-155.
https://doi.org/10.1016/j.marpolbul.2014.06.006
Derraik, J. G. B. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull., 2002, 44(9), 842-852.
https://doi.org/10.1016/S0025-326X(02)00220-5
Devriese, L. I., van der Meulen, M. D., Maes, T., Bekaert, K., Paul-Pont, I., Frère, L., Robbens, J., and Vethaak, A. D. Microplastic contamination in brown shrimp (Crangon crangon, Linnaeus 1758) from coastal waters of the Southern North Sea and Channel area. Mar. Pollut. Bull., 2015, 98(1-2), 179-187.
https://doi.org/10.1016/j.marpolbul.2015.06.051
Egbeocha, C. O., Malek, S., Emenike, C. U., and Milow, P. Feasting on microplastics: ingestion by and effects on marine organisms. Aquat. Biol., 2018, 27, 93-106.
https://doi.org/10.3354/ab00701
European Commission. 2017. Commission Decision (EU) 2017/848 of 17 May 2017 laying down criteria and methodological standards on good environmental status of marine waters and specifications and standardised methods for monitoring and assessment, and repealing Decision 2010/477/EU. OJ, L125/43.
Farrell, P. and Nelson, K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut., 2013, 177, 1-3.
https://doi.org/10.1016/j.envpol.2013.01.046
Foekema, E. M., de Gruijter, C., Mergia, M. T., van Franeker, J. A., Murk, A. J., and Koelmans, A. A. Plastic in North Sea fish. Environ. Sci. Technol., 2013, 47(15), 8818-8824.
https://doi.org/10.1021/es400931b
Forsström, T., Fowler, A. E., Manninen, I., and Vesakoski, O. An introduced species meets the local fauna: predatory behavior of the crab Rhithropanopeus harrisii in the Northern Baltic Sea. Biol. Invasions, 2015, 17(9), 2729-2741.
https://doi.org/10.1007/s10530-015-0909-0
Fowler, A. E., Forsström, T., von Numers, M., and Vesakoski, O. The North American mud crab Rhithropanopeus harrisii (Gould, 1841) in newly colonized Northern Baltic Sea: Distribution and ecology. Aquat. Invasions, 2013, 8(1), 89-96.
https://doi.org/10.3391/ai.2013.8.1.10
[GESAMP] Sources, fate and effects of microplastics in the marine environment: A global assessment. Rep. Stud. GESAMP, 2015, 90, 96.
Geyer, R., Jambeck, J. R., and Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv., 2017, 3(7), 1-5.
https://doi.org/10.1126/sciadv.1700782
Green, D. S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut., 2016, 216, 95−103.
https://doi.org/10.1016/j.envpol.2016.05.043
Green, D. S., Boots, B., O'Connor, N. E., and Thompson, R. Microplastics affect the ecological functioning of an important biogenic habitat. Environ. Sci. Technol., 2017, 51(1), 68−77.
https://doi.org/10.1021/acs.est.6b04496
Hämer, J., Gutow, L., Köhler, A., and Saborowski, R. Fate of microplastics in the marine isopod Idotea emarginata. Environ. Sci. Technol., 2014, 48(22), 13451−13458.
https://doi.org/10.1021/es501385y
Hegele-Drywa, J. and Normant, M. Feeding ecology of the American crab Rhithropanopeus harrisii (Crustacea, Decapoda) in the coastal waters of the Baltic Sea. Oceanologia, 2009, 51(3), 361−375.
https://doi.org/10.5697/oc.51-3.361
Hegele-Drywa, J. and Normant, M. Non-native crab Rhithropanopeus harrisii (Gould, 1984) - a new component of the benthic communities in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia, 2014a, 56(1), 125−139.
https://doi.org/10.5697/oc.56-1.125
Hegele-Drywa, J. and Normant, M. Effect of temperature on physiology and bioenergetics of adult Harris mud crab Rhithropanopeus harrisii (Gould, 1841) from the southern Baltic Sea. Oceanol. Hydrobiol. Stud., 2014b, 43, 219−227.
https://doi.org/10.2478/s13545-014-0136-9
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., and Law, K. L. Plastic waste inputs from land into the ocean. Science, 2015, 347(6223), 768-771.
https://doi.org/10.1126/science.1260352
Kotta, J. and Ojaveer, H. Rapid establishment of the alien crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Estonian J. Ecol., 2012, 61(4), 293-298.
https://doi.org/10.3176/eco.2012.4.04
Li, J., Lusher, A. L., Rotchell, J. M., Deudero, S., Turra, A., Bråte, I. L. N., Sun, C., Shahadat Hossain, M., Li, Q., Kolandhasamy, P., and Shi, H. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut., 2019, 244, 522-533.
https://doi.org/10.1016/j.envpol.2018.10.032
Lusher, A. 2015. Microplastics in the Marine Environment: Distribution, Interactions and Effects. In Marine Anthropogenic Litter (Bergmann, M., Gutow, L., Klages, M., eds). Springer, Cham, 2015, 245-307.
https://doi.org/10.1007/978-3-319-16510-3_10
McGaw, I. J. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis II. Gastric evacuation and motility. J. Exp. Biol., 2006, 209, 3777-3785.
https://doi.org/10.1242/jeb.02442
McGaw, I. J. and Curtis, D. L. A review of gastric processing in decapod crustaceans. J. Comp. Physiol. B, 2013, 183, 443-465.
https://doi.org/10.1007/s00360-012-0730-3
Murray, F. and Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull., 2011, 62(6), 1207-1217.
https://doi.org/10.1016/j.marpolbul.2011.03.032
Nadal, M. A., Alomar, C., and Deudero, S. High levels of microplastic ingestion by the semipelagic fish bogue Boops boops (L.) around the Balearic Islands. Environ. Pollut., 2016, 214, 517-523.
https://doi.org/10.1016/j.envpol.2016.04.054
Näkki, P., Setälä, O., and Lehtiniemi, M. 2019. Seafloor sediments as microplastic sinks in the northern Baltic Sea - Negligible upward transport of buried microplastics by bioturbation. Environ. Pollut., 2019, 249, 74-81.
https://doi.org/10.1016/j.envpol.2019.02.099
Nurkse, K., Kotta, J., Rätsep, M., Kotta, I., and Kreitsberg, R. Experimental evaluation of the effects of the novel predators, round goby and mud crab on benthic invertebrates in the Gulf of Riga, Baltic Sea. J. Mar. Biol. Assoc. U. K., 2018, 98(1), 25−31.
https://doi.org/10.1017/S0025315417001965
Ojaveer, H., Gollasch, S., Jaanus, A., Kotta, J., Laine, A. O., Minde, A., Normant, M., and Panov, V. E. Chinese mitten crab Eriocheir sinensis in the Baltic Sea - a supply-side invader? Biol. Invasions, 2007, 9(4), 409-418.
https://doi.org/10.1007/s10530-006-9047-z
PlasticsEurope. Plastics - The Facts 2017.
https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf
(accessed 2019-05-18).
https://doi.org/10.1055/s-0039-1692348
Qu, X., Su, L., Li, H., Liang, M., and Shi, H. Assessing the relationship between the abundance and properties of microplastics in water and in mussels. Sci. Total Environ., 2018, 621, 679-686.
https://doi.org/10.1016/j.scitotenv.2017.11.284
Railo, S., Talvitie, J., Setälä, O., Koistinen, A., and Lehtiniemi, M. Application of an enzyme digestion method reveals microlitter in Mytilus trossulus at a wastewater discharge area. Mar. Pollut. Bull., 2018, 130, 206-214.
https://doi.org/10.1016/j.marpolbul.2018.03.022
Ritchie, H. and Roser, M. Plastic Pollution.
https://ourworldindata.org/plastic-pollution
(accessed 2019-07-21).
Roche, D. G. and Torchin, M. E. Established population of the North American Harris mud crab, Rhitropanopeus harrisii (Gould, 1841) (Crustacea: Brachyura: Xanthidae) in the Panama Canal. Aquat. Invasions, 2007, 2(3), 155-161.
https://doi.org/10.3391/ai.2007.2.3.1
Scherer, C., Brennholt, N., Reifferscheid, G., and Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep., 2017, 7, 17006.
https://doi.org/10.1038/s41598-017-17191-7
Setälä, O., Norkko, J., and Lehtiniemi, M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar. Pollut. Bull., 2016, 102(1), 95-101.
https://doi.org/10.1016/j.marpolbul.2015.11.053
Solomon, O. O. and Palanisami, T. Microplastics in the marine environment: Current status, assessment methodologies, impacts and solutions. J. Pollut. Eff. Cont., 2016, 4(2), 161.
StatSoft, Inc. 2013. Electronic Statistics Textbook. StatSoft, Tulsa, OK.
http://www.statsoft.com/textbook
(accessed 2019-07-24).
Sussarellu, R., Suquet, M., Thomas, Y., Lambert, C., Fabioux, C., Pernet, M. E. J., Le Goïc, N., Quillien, V., Mingant, C., Epelboin, Y., Corporeau, C., Guyomarch, J., Robbens, J., Paul-Pont, I., Soudant, P., and Huvet, A. Oyster reproduction is affected by exposure to polystyrene microplastics. PNAS, 2016, 113(9), 2430-2435.
https://doi.org/10.1073/pnas.1519019113
Vandermeersch, G., Van Cauwenberghe, L., Janssen, C. R., Marques, A., Granby, K., Fait, G., Kotterman, M. J. J., Diogène, J., Bekaert, K., Robbens, J., and Devriese, L. A critical view on microplastic quantification in aquatic organisms. Environ. Res., 2015, 143(B), 46-55.
https://doi.org/10.1016/j.envres.2015.07.016
Wang, J., Tan, Z., Peng, J., Qiu, Q., and Li, M. The behaviors of microplastics in the marine environment. Mar. Environ. Res., 2016, 113, 7-17
https://doi.org/10.1016/j.marenvres.2015.10.014
Watts, A. J. R., Lewis, C., Goodhead, R. M., Beckett, S. J., Moger, J., Tyler, C. R., and Galloway, T. S. Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ. Sci. Technol., 2014, 48(15), 8823-8830.
https://doi.org/10.1021/es501090e
Watts, A. J. R., Urbina, M. A., Corr, S., Lewis, C., and Galloway, T. S. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environ. Sci. Technol., 2015, 49(24), 14597-14604.
https://doi.org/10.1021/acs.est.5b04026
Watts, A. J. R., Urbina, M. A., Goodhead, R. M., Moger, J., Lewis, C., and Galloway, T. S. Effect of microplastic on the gills of the Shore Crab Carcinus maenas. Environ. Sci. Technol., 2016, 50(10), 5364-5369.
https://doi.org/10.1021/acs.est.6b01187
Wójcik-Fudalewska, D., Normant-Saremba, M., and Anastácio, P. Occurrence of plastic debris in the stomach of the invasive crab Eriocheir sinensis. Mar. Pollut. Bull., 2016, 113(1-2), 306-311.
https://doi.org/10.1016/j.marpolbul.2016.09.059