Quality of bioactive surface is crucial for achieving the required sensitivity and selectivity of biosensing systems. Numerous methods are available for the characterization of metal-coated surfaces, but only a few to test the efficacy of biomaterial immobilization and the level of non-specific binding. Herewith we propose to use total internal reflection fluorescence (TIRF) microscopy for the characterization of the surface analyte recognition capacity. Biomolecules were bound onto titanium/gold covered glass using three different self-assembled monolayers (SAM). The surfaces with attached antibodies were evaluated using the specific binding of fluorophore-labeled secondary antibodies and visualized with TIRF. Among studied SAMs, aminothiol layers with glutaraldehyde coupling demonstrated high binding capacity along with excellent homogeneity indicating their suitability for applications in biosensors.
1. Xue, Y., Li, X., Li, H., and Zhang, W. Quantifying thiol-gold interactions towards the efficient strength control. Nat. Commun., 2014, 5, 1–9.
https://doi.org/10.1038/ncomms5348
2. Lio, A., Charych, D. H., and Salmeron, M. Comparative Atomic Force Microscopy Study of the Chain Length Dependence of Frictional Properties of Alkanethiols on Gold and Alkylsilanes on Mica. J. Phys. Chem. B, 1997, 101(19), 3800–3805.
https://doi.org/10.1021/jp963918e
3. Hegner, M., Wagner, P., and Semenza, G. Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Lett., 1993, 336(3), 452–456.
https://doi.org/10.1016/0014-5793(93)80854-N
4. Marti, O., Colchero, J., and Mlynek, J. Combined scanning force and friction microscopy of mica. Nanotechnology, 1990, 1(2),141–144.
https://doi.org/10.1088/0957-4484/1/2/003
5. Shein, J. B., Lai, L. M. H., Eggers, P. K., Paddon-Row, M. N., and Gooding, J. J. Formation of Efficient Electron Transfer Pathways by Adsorbing Gold Nanoparticles to Self-Assembled Monolayer Modified Electrodes. Langmuir, 2009, 25(18), 11121–11128.
https://doi.org/10.1021/la901421m
6. Eckermann, A. L., Feld, D. J., Shaw, J. A., and Meade, T. J. Electrochemistry of redox-active self-assembled monolayers. Coord. Chem. Rev., 2010, 254(15–16), 1769–1802.
https://doi.org/10.1016/j.ccr.2009.12.023
7. Radke, S. M. and Alocilja, E C. A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosens. Bioelectron., 2005, 20(8), 1662–1667.
https://doi.org/10.1016/j.bios.2004.07.021
8. Briand, E., Gu, C., Boujday, S, Salmain, M., Herry, J. M., and Pradier, C. M. Functionalisation of gold surfaces with thiolate SAMs: Topography/bioactivity relationship – A combined FT-RAIRS, AFM and QCM investigation. Surf. Sci., 2007, 601(18), 3850–3855.
https://doi.org/10.1016/J.SUSC.2007.04.102
9. Zamfir, L.-G., Geana, I., Bourigua, S., Rotariu, L., Bala, C., Errachid, A., et al. Highly sensitive label-free immunosensor for ochratoxin. A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens. Actuators, B, 2011, 159(1), 178–184.
https://doi.org/10.1016/j.snb.2011.06.069
10. Peterson, A. W., Halter, M., Tona, A., Bhadriraju, K, and Plant, A. L. Surface plasmon resonance imaging of cells and surface-associated fibronectin. BMC Cell Biol., 2009, 10(16), 1–17.
https://doi.org/10.1186/1471-2121-10-16
11. Löfås, S., Johnsson, B., Edström, Å., Hansson, A., Lindquist, G., Müller-Hillgren, R.-M., et al. Methods for site controlled coupling to carboxymethyldextran surfaces in surface plasmon resonance sensors. Biosens. Bioelectron., 1995; 10(9–10), 813–822.
https://doi.org/10.1016/0956-5663(95)99220-F
12. Porter, M. D., Bright, T. B., Allara, D. L., and Chidsey, C. E. D. Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc., 1987, 109(12), 3559–3568.
https://doi.org/10.1021/ja00246a011
13. Troughton, E. B., Bain, C. D., Whitesides, G. M., Nuzzo, R. G., Allara, D. L., and Porter, M. D. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure, properties, and reactivity of constituent functional groups. Langmuir, 1988, 4(2), 365–385.
https://doi.org/10.1021/la00080a021
14. Parviz, M., Gaus, K., and Gooding, J. J. Simultaneous impedance spectroscopy and fluorescence microscopy for the real-time monitoring of the response of cells to drugs. Chem. Sci., 2017, 8(3), 1831–1840.
https://doi.org/10.1039/c6sc05159f
15. Techane, S. D., Gamble, L. J., and Castner, D. G. Multitechnique Characterization of Self-Assembled Carboxylic Acid-Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces. J. Phys. Chem. C, 2011, 115(19), 9432–9441.
https://doi.org/10.1021/jp201213g
16. Benmouna, R., Rachet, V., Le Barny, P., Feneyrou, P., Maschke, U., and Coqueret, X. Polymer Dispersed Liquid Crystals with Nanosized Droplets: SEM, FTIR and UV Spectroscopy Studies. J. Polym. Eng., 2006, 26(7), 655–669.
https://doi.org/10.1515/POLYENG.2006.26.7.655
17. Koslowski, B., Tschetschetkin, A., Maurer, N., and Ziemann, P. 4-Mercaptopyridine on Au(111): a scanning tunneling microscopy and spectroscopy study. Phys. Chem. Chem. Phys., 2011, 13(9), 4045–4050. https://doi.org/10.1039/c0cp02162h
18. Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell. Biol., 1981, 89(1), 141–145.
https://doi.org/10.1083/jcb.89.1.141
19. Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives. J. Biomed. Opt., 2001, 6(1).
https://doi.org/10.1117/1.1335689
20. Jain, A., Liu, R., Xiang, Y. K., and Ha, T. Single-molecule pull-down for studying protein interactions. Nat. Protoc., 2012, 7(3), 445–452.
https://doi.org/10.1038/nprot.2011.452
21. Claessen, V. I., Engelkamp, H., Christianen, P. C. M., Maan, J. C., Nolte, R. J. M., Blank, K., and Rovan, A. E. Single-biomolecule kinetics: the art of studying a single enzyme. Annu. Rev. Anal. Chem., 2010, 3, 319–340.
https://doi.org/10.1146/annurev.anchem.111808.073638
22. Gryczynski, I., Malicka, J., Gryczynski, Z., and Lakowicz, J. R. Surface Plasmon-Coupled Emission with Gold Films. J. Phys. Chem. B, 2004, 108(33), 12568–12574.
https://doi.org/10.1021/jp040221h
23. Chizhik, A. I., Rother, J., Gregor, I., Janshoff, A., and Enderlein, J. Metal-induced energy transfer for live cell nanoscopy. Nat, Photonics, 2014, 8, 124–127.
https://doi.org/10.1038/nphoton.2013.345
24. Lakowicz, J. R. Principles of fluorescence spectroscopy, 3rd ed. Springer, Boston, MA, 2006.
25. Mihklepp, K., Kivirand, K., Nikopensius, M., Peedel, D., Utt, M., and Rinken, T. Design and production of antibodies for the detection of Streptococcus uberis. Enzyme Microb. Technol., 2017, 96, 135–142.
https://doi.org/10.1016/j.enzmictec.2016.10.009
26. Kamińska, A, Witkowska, E., Winkler, K., Dzięcielewski, I., Weyher, J. L., and Waluk, J. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens. Bioelectron., 2015, 66, 461–467.
https://doi.org/10.1016/j.bios.2014.10.082
27. Im, H., Huang, X.-J., Gu, B., and Choi, Y.-K. A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol., 2007, 2(7), 430–434.
https://doi.org/10.1038/ nnano.2007.180
28. Mirsky, V. M., Riepl, M., and Wolfbeis, O. S. Capacitive monitoring of protein immobilization and antigen–antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosens. Bioelectron., 1997, 12(9–10), 977–989.
https://doi.org/10.1016/S0956-5663(97)00053-5
29. Zhang, J.-H., Chung, T. D. Y., and Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen., 1999, 4(2), 67–73.