Nowadays a lot of attention is paid on the issues of global warming and climate change. Human impact on the environment is noticeable from the aspect of resource life cycles. Energy efficiency requirements have led to the research and development of alternative technologies for the rotating electrical machines. The life cycle assessment brings out important procedures which can help to reduce machines’ impact on the environment, being therefore an instrument for the assessment of the influence of particular products on the environment from cradle to grave – beginning with working out the materials, followed by manufacturing, transporting, marketing, use, and recycling. Three types of electrical machines have been chosen for comparison: synchronous reluctance motor, permanent magnet assisted synchronous reluctance motor and induction motor. The article presents a life cycle assessment case study based on experimental results of motors designed by the research group.
1. Waide, P. and Brunner, C. U. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. IEA Energy Papers, No. 2011/07. OECD Publishing, Paris, 2011.
https://doi.org/10.1787/5kgg52gb9gjd-en
2. IEC 60034-30-1:2014 Rotating electrical machines – Part 30-1: Efficiency classes of line operated AC motors (IE code), 2014.
3. Ferreira, F. J. T. E. and De Almeida, A. T. Reducing energy costs in electric-motor-driven systems: Savings through output power reduction and energy regeneration. IEEE Ind. Appl. Mag., 2018, 24(1), 84–97.
https://doi.org/10.1109/ MIAS.2016.2600685
4. Orosz, T. Evolution and modern approaches of the power transformer cost optimization methods. Period. Polytech. Electr. Eng. Comput. Sci., 2019, 63(1), 37–50.
https://doi.org/10.3311/PPee.13000
5. Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for the setting of ecodesign requirements for energy-related products. OJ, 2009, L 285, 31.10.
6. ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework.
https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en
7. ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines.
https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en
8. Orlova, S., Rassõlkin, A., Kallaste, A., Vaimann, T., and Belahcen, A. Lifecycle analysis of different motors from the standpoint of environmental impact. Latv. J. Phys. Tech. Sci., 2016, 53(6), 37–46.
https://doi.org/10.1515/lpts-2016-0042
9. Martinez, E., Andrada, P., Blanque, B., Torrent, M., Perat, J. I., and Sanchez, J. A. Environmental and life cycle cost analysis of a switched reluctance motor. In Proceedings of the 18th International Conference on Electrical Machines, September 6–9, 2008, Vilamoura, Portugal. IEEE, 2009, 1–4.
https://doi.org/10.1109/ICELMACH.2008.4800156
10. Musuroi, S., Sorandaru, C., Greconici, M., Olarescu, V. N., and Weinman, M. Low-cost ferrite permanent magnet assisted synchronous reluctance rotor an alternative solution for rare earth permanent magnet synchronous motors. In Proceedings of the IECON 2013 – 39th Annual Conference of the IEEE Industrial Electronics Society, November 10–13, 2013, Vienna, Austria. IEEE, 2014, 2966–2970.
https://doi.org/10.1109/IECON.2013.6699602
11. Boldea, I., Tutelea, L. N., Parsa, L., and Dorrell, D. Automotive Electric Propulsion Systems With Reduced or No Permanent Magnets: An Overview. IEEE Trans. Ind. Electron., 2014, 61(10), 5696–5711.
https://doi.org/10.1109/TIE.2014.2301754
12. Bianchi, N., Bolognani, S., Carraro, E., Castiello, M., and Fornasiero, E. Electric Vehicle Traction Based on Synchronous Reluctance Motors. IEEE Trans. Ind. Appl., 2016, 52(6), 4762–4769.
https://doi.org/10.1109/TIA.2016.2599850
13. Degano, M., Carraro, E., and Bianchi, N. Selection Criteria and Robust Optimization of a Traction PM-Assisted Synchronous Reluctance Motor. IEEE Trans. Ind. Appl., 2015, 51(6), 4383–4391.
https://doi.org/10.1109/TIA.2015.2443091
14. Janson, K., Belahcen, A., Kallaste, A., and Vaimann, T. Permanent magnet reluctance motor. Estonian Patent P201400013, 15 July 2016.
15. Mahajan, S. Encyclopedia of materials: Science and Technology, 1st Edition. Elsevier, 2001.
16. Shokrollahi, H. and Janghorban, K. Soft magnetic composite materials (SMCs). J. Mater. Process. Technol., 2007, 189(1), 1–12.
https://doi.org/10.1016/j.jmatprotec.2007.02.034
17. Alatalo, M., Lundmark, S. T., and Grunditz, E. A. Electric machine design for traction applications considering recycling aspects-review and new solution. In Proceedings of the IECON 2011 – 37th Annual Conference of the IEEE Industrial Electronics Society, November 7–10, 2011, Melbourne, VIC, Australia. IEEE, 2012, 1836–1841.
https://doi.org/10.1109/IECON.2011.6119585
18. SKF. INSOCOAT® bearings increase service life in a hot gas fan.
https://www.skf.com/binary/21-295087/0901d19680629b22-6159-EN-Fan-hot-gas-ref-case.pdf
19. Kallaste, A., Vaimann, T., and Belahcen, A. Influence of magnet material selection on the design of slow-speed permanent magnet synchronous generators for wind applications. Elektron. ir Elektrotechnika, 2017, 23(1), 31–38.
https://doi.org/10.5755/j01.eie.23.1.17581
20. Pellegrino, G., Jahns, T. M., Bianchi, N., Soong, W., and Cupertino, F. The Rediscovery of Synchronous Reluctance and Ferrite Permanent Magnet Motors. Springer International Publishing, 2016.
https://doi.org/10.1007/978-3-319-32202-5
21. Vaimann, T., Kallaste, A., Kilk, A., and Belahcen, A. Magnetic properties of reduced Dy NdFeB permanent magnets and their usage in electrical machines. In Proceedings of the IEEE AFRICON Conference, September 9–12, 2013, Pointe-Aux-Piments, Mauritius.
https://doi.org/10.1109/AFRCON.2013.6757787
22. Melentjev, S., Belahcen, A., Kallaste, A., Rassõlkin, A., and Vaimann, T. Review of loss calculation reduction control methods of permanent magnet assisted reluctance drive. In Proceedings of the Electric Power Quality and Supply Reliability (PQ), August 29–31, 2016, Tallinn, Estonia. IEEE, 2016, 199–206.
https://doi.org/10.1109/PQ.2016.7724113
23. Ghahfarokhi, P. S., Belahcen, A., Kallaste, A., Vaimann, T., Gerokov, L., and Rassolkin, A. Thermal Analysis of a SynRM Using a Thermal Network and a Hybrid Model. In Proceedings of the XIII International Conference on Electrical Machines (ICEM), September 3–6, 2018, Alexandroupoli, Greece. IEEE, 2008, 2682–2688.
https://doi.org/10.1109/ICELMACH.2018.8507002
24. Final Implementation Report for Directives 2002/96/EC and 2012/19/EU on Waste Electrical and Electronic Equipment (WEEE): 2013–2015.
https://ec.europa.eu/environment/archives/waste/reporting/pdf/Final_Implementation_Report_2013_2015_WEEE.pdf
25. Harris, A. ORGALIME Guide to the scope of the WEEE and RoHS directives. Brussels, 2006.
26. International Energy Agency (IEA). World Energy Outlook 2016, IEA, Paris.
https://doi.org/10.1787/weo-2016-en
27. Karlsson, B. and Järrhed, J.-O. Recycling of electrical motors by automatic disassembly. Meas. Sci. Technol., 2000, 11(4), 350–357.
https://doi.org/10.1088/0957-0233/11/4/303
28. Lundmark, S. T. and Alatalo, M. A segmented claw-pole motor for traction applications considering recycling aspects. In Proceedings of the Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), March 27–30, 2013, Monte Carlo, Monaco. IEEE, 2013, 1–6.
https://doi.org/10.1109/EVER.2013.6521613
29. Yuksel, T. and Baylakoglu, I. Recycling of Electrical and Electronic Equipment, Benchmarking of Disassembly Methods and Cost Analysis. In Proceedings of the 2007 IEEE International Symposium on Electronics and the Environment, May 7–10, 2007, Orlando, FL, USA. IEEE, 2007, 222–226.
https://doi.org/10.1109/ISEE.2007.369398
30. Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., and Buchert, M. Recycling of rare earths: a critical review. J. Cleaner Prod., 2013, 51, 1–22.
https://doi.org/10.1016/j.jclepro.2012.12.037
31. Elwert, T., Goldmann, D., Römer, F., Buchert, M., Merz, C., Schueler, D., and Sutter, J. Current developments and challenges in the recycling of key components of (hybrid) electric vehicles. Recycling, 2015, 1(1), 25–60.
https://doi.org/10.3390/recycling1010025
32. Högberg, S., Bendixen, F. B., Mijatovic, N., Jensen, B. B., and Holbøll, J. Influence of demagnetization-temperature on magnetic performance of recycled Nd-Fe-B magnets. In Proceedings of the IEEE International Electric Machines & Drives Conference (IEMDC), May 10–13, 2015, Coeur d’Alene, ID, USA. IEEE, 2006, 1242–1246.
https://doi.org/10.1109/IEMDC.2015.7409220
33. SKF. Rolling bearings and seals in electric motors and generators: A handbook for the industrial designer and end-user. SKF Group, 2013.
34. Tong, C., Wu, F., Zheng, P., Yu, B., Sui, Y., and Cheng, L. Investigation of magnetically isolated multiphase modular permanent-magnet synchronous machinery series for wheel-driving electric vehicles. IEEE Trans. Magn., 2014, 50(11), 1–4.
https://doi.org/10.1109/TMAG.2014.2319593
35. Ouyang, W., Huang, S., Good, A., and Lipo, T. A. Modular permanent magnet machine based on soft magnetic composite. In Proceedings of the International Conference on Electrical Machines and Systems, September 27–29, 2005, Nanjing, China. IEEE, 2006, 235–239.
https://doi.org/10.1109/ICEMS.2005.202519
36. Geidarovs, R., Podgornovs, A., and Galkin, I. Simulation and initial evaluation of modular motor-generator for cost-effective power-assist wheelchair. In Proceedings of the IEEE 59th Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON, November 12–13, 2018, Riga, Latvia.
https://doi.org/10.1109/RTUCON.2018.8659877
37. Podgornovs, A. and Galkin, I. Evaluation of Configurations of Modular Motor for Power-Assist Wheelchair. In Proceedings of the 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives, IWED, January 30 – February 2, 2019, Moscow, Russia.
https://doi.org/10.1109/IWED.2019.8664279
38. Hogberg, S., Pedersen, T. S., Bendixen, F. B., Mijatovic, N., Jensen, B. B., and Holboll, J. Direct reuse of rare earth permanent magnets – Wind turbine generator case study. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), September 4–7, 2016, Lausanne, Switzerland. IEEE, 2016, 1625–1629.
https://doi.org/10.1109/ICELMACH.2016.7732741
39. Rassõlkin, A., Kallaste, A., Orlova, S., Gevorkov, L., Vaimann, T., and Belahcen, A. Re-use and recycling of different electrical machines. Latv. J. Phys. Tech. Sci., 2018, 55(4), 13–23.
https://doi.org/10.2478/lpts-2018-0025
40. Steentjes, S. et al. Effect of the interdependence of cold rolling strategies and subsequent punching on magnetic properties of NO steel sheets. IEEE Trans. Magn., 2016, 52(5), 1–4.
https://doi.org/10.1109/TMAG.2016.2516340
41. Boughanmi, W., Manata, J. P., Roger, D., Jacq, T., and Streiff, F. Life cycle assessment of a three-phase electrical machine in continuous operation. IET Electr. Power Appl., 2012, 6(5), 277. doi:
https://doi.org/10.1049/iet-epa.2011.0219
42. Orosz, T., Sőrés, P., Raisz, D., and Tamus, Á. Z. Analysis of the green power transition on optimal power transformer designs. Period. Polytech. Electr. Eng. Comput. Sci., 2015, 59(3), 125–131.
https://doi.org/10.3311/PPee.8583
43. Gutt, H.-J. and Grüner, A. Definition of power density as a general utilization factor of electrical machines. Eur. Trans. Electr. Power, 2007, 8(4), 305–308.
https://doi.org/10.1002/etep.4450080414
44. EuP Network Website.
http://www.eup-network.de/updates/
45. Andrada, P., Blanqué, B., Martínez, E., Perat, J. I., Sánchez, J. A., and Torrent, M. Environmental and life cycle cost analysis of one switched reluctance motor drive and two inverter-fed induction motor drives. IET Electr. Power Appl., 2012, 6(7), 390.
https://doi.org/10.1049/iet-epa.2011.0320
46. de Almeida, A. T., Ferreira, F. J. T. E., Fong, J., and Fonseca, P. EUP Lot 11 Motors Final Report. Coimbra, Portugal, 2008.
https://www.applia-europe.eu/images/Library/Preparatory_Study_on_electric_motors_-_02_2008.pdf
47. Lopez, C., Michalski, T., Espinosa, A., and Romeral, L. New SynRM design approach based on behaviour maps analysis. In Proceedings of the XXII International Conference on Electrical Machines (ICEM), September 4–7, 2016, Lausanne, Switzerland. IEEE, 2016, 1915–1921.
https://doi.org/10.1109/ICELMACH.2016.7732785
48. Ghahfarokhi, P. S., Kallaste, A., Belahcen, A., Vaimann, T., and Rassõlkin, A. Review of thermal analysis of permanent magnet assisted synchronous reluctance machines. In Proceedings of the Electric Power Quality and Supply Reliability (PQ), August 29–31, 2016, Tallinn, Estonia. IEEE, 2016, 219–224.
https://doi.org/10.1109/PQ.2016.7724116
49. Kallaste, A., Vaimann, T., and Rassõlkin, A. Additive Design Possibilities of Electrical Machines. In Proceedings of the IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), November 12–13, 2018, Riga, Latvia. IEEE, 2019, 1–5.
https://doi.org/10.1109/RTUCON.2018.8659828
50. Kaska, J., Orosz, T., Karban, P., Doležel, I., Pechánek, R., and Pánek, D. Optimization of Reluctance Motor with Printed Rotor. In Proceeding of the 22nd International Conference on the Computation of Electromagnetic Fields (COMPUMAG), July, 15–19, 2019, Paris, France. IEEE, 2020, 1–4.
https://doi.org/10.1109/COMPUMAG45669.2019.9032792
51. Rassõlkin, A., Vaimann, T., Kallaste, A., and Kuts, V. Digital twin for propulsion drive of autonomous electric vehicle. In Proceedings of the IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), October 7–9, 2019, Riga, Latvia.
https://doi.org/10.1109/RTUCON48111.2019.8982326