ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Application of diffuse reflectance spectroscopy for quick laboratory assessment of Estonian oil shale quality; 134–142
PDF | https://doi.org/10.3176/proc.2020.2.04

Authors
Iram Tufail, Peeter Paris, Indrek Jõgi, Märt Aints, Andres Siiman, Hella Riisalu, Matti Laan
Abstract

Diffuse reflectance spectroscopy in near infrared region was used as a fast laboratory method for quantitative assessment of the calorific value and the moisture content of Estonian oil shale. Samples of different caloricity were collected from Narva open-cast mine and from beneficiation plant of Estonia underground mine, Estonia. The set of crushed oil shale samples, which moisture content was varied were tested by the help of a commercial multipurpose analyser, where Fourier-transform spectrometer recorded spectra in near infrared region and the software used partial least squares regression method. Results were related to the values of caloricity and moisture content, obtained by the bomb calorimeter and weighing methods, respectively. Bands characterizing organic and inorganic parts of the samples as well as the presence of the free water were ascertained by the infrared spectroscopy. Using the software provided by the analyser, the calorific value and the moisture content of samples were predicted. The prediction error of the lower caloricity was 1 MJkg–1 and prediction error of the weight percent of the moisture content was 1.35%. The comparison between achieved results and the values obtained from earlier laser-induced breakdown spectroscopy (LIBS) measurements shows that in laboratory conditions more precise prediction can be made by diffuse reflectance measurements. Further improvement of the prediction accuracy could be achieved by modified software which considers observed nonlinear effects in spectra.

References

1. Jordan Kearns, J. and Tuohy, E. Trends in Estonian Oil Shale Utilization, 2015, International center for defense and security, Estonia. 
https://icds.ee/wp-content/uploads/2015/Jordan_Kearns_-_Trends_in_Estonian_Oil_Shale_Utilization_Oct_2015.pdf

2. Determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value, ISO 1928:2009, modified.

3. Gaft, M., Dvir, E., Modiano, H., and Schone, U. Laser Induced Breakdown Spectroscopy machine for online ash analyses in coal. Spectrochim. Acta, Part B, 2008, 63(10), 1177–1182.
https://doi.org/10.1016/j.sab.2008.06.007

4. Romero, C. E., De Saro, R., Craparo, J., Weisberg, A., Moreno, R., and Yao, Z. Laser-induced breakdown spectroscopy for coal characterization and assessing slagging propensity. Energy Fuels, 2010, 24(1), 510–517.
https://doi.org/10.1021/ef900873w

5. Sheta, S., Afgan, M., Hou, Z., Yao, S.-C., Zhang, L., Li, Z., and Wang, Z. Coal analysis by laser-induced breakdown spectroscopy: a tutorial review. J. Anal. At. Spectrom., 2019, 34, 1047–1082.
https://doi.org/10.1039/C9JA00016J

6. Cremers, D. A. and Radziemski, L. J. Handbook of Laser-Induced Breakdown Spectroscopy. John Wiley & Sons, Ltd., 2006.
https://doi.org/10.1002/0470093013

7. Aints, M., Paris, P., Laan, M., Piip, K., Riisalu, H., and Tufail, I. Determination of heating value of Estonian oil shale by laser-induced breakdown spectroscopy. J. Spectrosc., 2018, 4605925. 
https://doi.org/10.1155/2018/4605925

8. Aints, M., Paris, P., Tufail, I., Jõgi, I., Aosaar, H., Riisalu, H., and Laan, M. Determination of the calorific value and moisture content of crushed oil shale by LIBS. Oil Shale, 2018, 35(4), 339–355.
https://doi.org/10.3176/oil.2018.4.04

9. Pasquini, C. Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications. J. Braz. Chem. Soc., 2003, 14(2), 198–219.
https://doi.org/10.1590/S0103-50532003000200006

10. Blitz, J. P. Diffuse reflectance spectroscopy. In Modern Techniques in Applied Molecular Spectroscopy (Mirabella, F. M., ed.). John Wiley & Sons, Inc., 1998, 185–219.

11. Forrester, S. T., Janik, L. J., McLaughlin, M. J., Soriano-Disla, J. M., Stewart, R., and Dearman, B. Total petroleum hydrocarbon concentration prediction in soils using diffuse reflectance infrared spectroscopy. Soil Sci. Soc. Am. J., 2013, 77(4), 450–460.
https://doi.org/10.2136/sssaj2012.0201

12. Kokah, D. R., Silas, A. D., and Akeme-Esuotei, O. N. Rapid assessment of petroleum hydrocarbon contamination in soils: spectroscopy approach. Eng. Appl. Sci., 2019, 4(3), 66–73.
https://doi.org/10.11648/j.eas.20190403.13

13. Goetz, A. F., Curtiss, B., and Shiley, D. A. Rapid gangue mineral concentration measurement over conveyors by NIR reflectance spectroscopy. Miner. Eng., 2009, 22(5), 490–499.
https://doi.org/10.1016/j.mineng.2008.12.013

14. Rodionov, A., Welp, G., Damerow, L., Berg, T., Amelung, W., and Pätzold, S. Towards on-the-go field assessment of soil organic carbon using Vis–NIR diffuse reflectance spectroscopy: Developing and testing a novel tractor-driven measuring chamber. Soil Tillage Res., 2015, 145, 93–102.
https://doi.org/10.1016/j.still.2014.08.007

15. Kaihara, M., Takahashi, S., Akazawa, T., Sato, T., and Takashi, S. Application of near infrared spectroscopy to rapid analysis of coals. Spectrosc. Lett., 2002, 35(3), 369–376.
https://doi.org/10.1081/SL-120005673

16. Bona, M. T. and Andres, J. M. Coal analysis by diffuse reflectance near-infrared spectroscopy: Hierarchical cluster and linear discriminant analysis. Talanta, 2007, 72(4), 1423–1431.
https://doi.org/10.1016/j.talanta.2007.01.050

17. He, C., Yang, Z., Chen, L., Huang, G., Liao, Na., and Han, L. Influencing factors of on-line measurement of straw-coal blends using near infrared spectroscopy. Trans. Chin. Soc. Agric. Eng., 2012, 30(9), 192–200. 

18. Wiesner, K., Fuchs, K., Gigler, A. M., and Pastusiak, R. Trends in near infrared spectroscopy and multivariate data analysis from an industrial prespective. Procedia Eng., 2014, 87, 867–870.
https://doi.org/10.1016/j.proeng.2014.11.292

19. Romeo, M. J., Adams, M. J., Hind, A. R., Bhargava, S. K., and Grocott, S. C. Near infrared prediction of oil yield from oil shale. J. Near Infrared Spectrosc., 2002, 10(3), 223–231.
https://doi.org/10.1255/jnirs.339

20. Adams, M. J., Awaj, F., Bhargava, S. K., Grocott, S. C., and Romeo, M. J. Prediction of oil yield from oil shale minerals using diffuse reflectance infrared Fourier transform spectroscopy. Fuel, 2005, 84(14–15), 1986–1991.
https://doi.org/10.1016/j.fuel.2005.04.011

21. Zhang, F., Liu, J., Lin, J., and Wang, Z. Detection of oil yield from oil shale based on near-infrared spectroscopy combined with wavelet transform and least squares support vector machines. Infrared Phys. Technol., 2019, 97, 224–228.
https://doi.org/10.1016/j.infrared.2018.12.036

22. Ots, A. Estonian oil shale properties and utilization in power plants. Energetika, 2007, 53(4), 8–18.

23. User manual Quant, Bruker Optik GmbH, 2011.

24. Viscarra Rossel, R. A., Walvoort, D. J. J. J., McBratney, A. B., Janik, L. J., and Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 2006, 131(1–2), 59–75.
https://doi.org/10.1016/j.geoderma.2005.03.007

25. Gaffey, S. J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns); calcite, aragonite, and dolomite. Am. Mineral., 1986, 71(1–2), 151–162.
https://doi.org/10.1029/JB092iB02p01429

26. Gunasekaran, S., Anbalagan, G., and Pandi, S. Raman and infrared spectra of carbonates of calcite structure. J. Raman Spectrosc., 2006, 37(9), 892–899.
https://doi.org/10.1002/jrs.1518

27. Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M., and Coulon, F. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Sci. Total Environ., 2018, 616–617, 147–155.
https://doi.org/10.1016/j.scitotenv.2017.10.323

28. Lille, Ü., Heinmaa, I., and Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799–804.
https://doi.org/10.1016/S0016-2361(02)00358-7

29. Norgaard, L., Saudland, A., Wagner, J., Nielsen, J. P., Munck, L., and Engelsen, S. B. Interval Partial Least-Squares Regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Appl. Spectrosc., 2000, 54(3), 413–419.
https://doi.org/10.1366/0003702001949500

30. Rinnan, Å., van den Berg, F., and Engelsen, S. B. Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal. Chem., 2009, 28(10), 1201–1222.
https://doi.org/10.1016/j.trac.2009.07.007

31. Filzmoser, P., Liebmann, B., and Varmuza, K. Repeated double cross validation. J. Chemom., 2009, 23(4), 160–171.
https://doi.org/10.1002/cem.1225

32. Valgma, I., Reinsalu, E., Sabanov, S., and Karu, V. Quality control of oil shale production in Estonian mines. Oil Shale, 2010, 27(3), 239–249.
https://doi.org/10.3176/oil.2010.3.05

33. Wang, Z., Feng, J., Li, L., Ni, W., and Li, Z. A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements. J. Anal. At. Spectrom., 2011, 26(11), 2289–2299.
https://doi.org/10.1039/c1ja10041f

 

Back to Issue