1. Abbott, B. C., Hill, A. V., and Howarth, J. V. The positive and negative heat production associated with a nerve impulse. Proc. R. Soc. B Biol. Sci., 1958, 148(931), 149-187.
https://doi.org/10.1098/rspb.1958.0012 |
|
2. Andersen, S. S. L., Jackson, A. D., and Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol., 2009, 88(2), 104-113.
https://doi.org/10.1016/j.pneurobio.2009.03.002 |
|
3. Appali, R., Petersen, S., and van Rienen, U. A comparision of Hodgkin-Huxley and soliton neural theories. Adv. Radio Sci., 2010, 8, 75-79.
https://doi.org/10.5194/ars-8-75-2010 |
|
4. Barz, H., Schreiber, A., and Barz, U. Impulses and pressure waves cause excitement and conduction in the nervous system. Med. Hypotheses, 2013, 81(5), 768-772.
https://doi.org/10.1016/j.mehy.2013.07.049 |
|
5. Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci., 2007, 8(6), 451-465.
https://doi.org/10.1038/nrn2148 |
|
6. Berezovski, A. and Va ́n, P. Internal Variables in Thermoelasticity. Springer, Cham, 2017.
https://doi.org/10.1007/978-3-319-56934-5 |
|
7. Bishop, G. H. Natural history of the nerve impulse. Physiol. Rev., 1956, 36(3), 376-399.
https://doi.org/10.1152/physrev.1956.36.3.376 |
|
8. Chen, H., Garcia-Gonzalez, D., and Jerusalem, A. Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Phys. Rev. E, 2019, 99(3), 032406.
https://doi.org/10.1103/PhysRevE.99.032406 |
|
9. Christov, C. I. and Velarde, M. G. Dissipative solitons. Physica D, 1995, 86(1-2), 323-347.
https://doi.org/10.1016/0167-2789(95)00111-G |
|
10. Clay, J. R. Axonal excitability revisited. Prog. Biophys. Mol. Biol., 2005, 88(1), 59-90.
https://doi.org/10.1016/j.pbiomolbio.2003.12.004 |
|
11. Courtemanche, M., Ramirez, R. J., and Nattel, S. Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol., 1998, 275(1), 301-321.
https://doi.org/10.1152/ajpheart.1998.275.1.H301 |
|
12. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91(2), 555-602.
https://doi.org/10.1152/physrev.00048.2009 |
|
13. Drukarch, B., Holland, H. A., Velichkov, M., Geurts, J. J. G., Voorn, P., Glas, G., and de Regt, H. W. Thinking about the nerve impulse: a critical analysis of the electricity-centered conception of nerve excitability. Prog. Neurobiol., 2018, 169, 172-185.
https://doi.org/10.1016/j.pneurobio.2018.06.009 |
|
14. Einstein, A. On the method of theoretical physics. Philos. Sci., 1934, 1(2), 163-169.
https://doi.org/10.1086/286316 |
|
15. El Hady, A. and Machta, B. B. Mechanical surface waves accompany action potential propagation. Nat. Commun., 2015, 6, 6697.
https://doi.org/10.1038/ncomms7697 |
|
16. Engelbrecht, J. Questions About Elastic Waves. Springer International Publishing, Cham, 2015.
https://doi.org/10.1007/978-3-319-14791-8 |
|
17. Engelbrecht, J., Peets, T., and Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol., 2018, 17(6), 1771-1783.
https://doi.org/10.1007/s10237-018-1055-2 |
|
18. Engelbrecht, J., Peets, T., and Tamm, K. Soliton trains in dispersive media. Low Temp. Phys., 2018, 44(7), 696-700.
https://doi.org/10.1063/1.5041436 |
|
19. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M., and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28-38. |
https://doi.org/10.3176/proc.2017.4.28 |
|
20. Engelbrecht, J., Tamm, K., and Peets, T. On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes. Philos. Mag., 2017, 97(12), 967-987.
https://doi.org/10.1080/14786435.2017.1283070 |
|
21. Engelbrecht, J., Tamm, K., and Peets, T. Modeling of complex signals in nerve fibers. Med. Hypotheses, 2018, 120, 90-95.
https://doi.org/10.1016/j.mehy.2018.08.021 |
|
22. Engelbrecht, J., Tamm, K., and Peets, T. Primary and secondary components of nerve signals. arXiv:1812.05335, 2018. |
|
23. Engelbrecht, J., Tamm, K., and Peets, T. Modelling of processes in nerve fibres at the interface of physiology and mathematics. arXiv 1906.01261, 2019. |
|
24. Engelbrecht, J., Tamm, K., and Peets, T. Internal variables used for describing the signal propagation in axons. Continuum Mech. Thermodyn., 2020. doi:10.1007/s00161-020-00868-2
https://doi.org/10.1007/s00161-020-00868-2 |
|
25. Eringen, A. C. Nonlinear Theory of Continuous Media. McGraw-Hill Book Company, New York, 1962. |
|
26. Fillafer, C., Mussel, M., Muchowski, J., and Schneider, M. F. Cell surface deformation during an action potential. Biophys. J., 2018, 114(2), 410-418.
https://doi.org/10.1016/j.bpj.2017.11.3776 |
|
27. Gonzalez-Perez, A., Mosgaard, L. D., Budvytyte, R., Villagran-Vargas, E., Jackson, A. D., and Heimburg, T. Solitary electromechanical pulses in lobster neurons. Biophys. Chem., 2016, 216, 51-59.
https://doi.org/10.1016/j.bpc.2016.06.005 |
|
28. Gross, D., Williams, W. S., and Connor, J. A. Theory of electromechanical effects in nerve. Cell. Mol. Neurobiol., 1983, 3(2), 89-111.
https://doi.org/10.1007/BF00735275 |
|
29. Hall, C. W. Laws and Models: Science, Engineering, and Technology. CRC Press, Boca Raton, 1999.
https://doi.org/10.1201/9781420050547 |
|
30. Heimburg, T. and Jackson, A. D. On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett., 2007, 02(01), 57-78.
https://doi.org/10.1142/S179304800700043X |
|
31. Heimburg, T. and Jackson, A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9790-9795.
https://doi.org/10.1073/pnas.0503823102 |
|
32. Heimburg, T. and Jackson, A. D. Thermodynamics of the nervous impulse. In Structure and Dynamics of Membranous Inter- faces (Nag, K., ed.). John Wiley & Sons, 2008, 18-337. |
|
33. Hodgkin, A. L. The Conduction of the Nervous Impulse. Liverpool University Press, 1964. |
|
34. Hodgkin, A. L. and Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4), 500-544.
https://doi.org/10.1113/jphysiol.1952.sp004764 |
|
35. Holland, L., de Regt, H. W., and Drukarch, B. Thinking about the nerve impulse: the prospects for the development of a comprehensive account of nerve impulse propagation. Front. Cell. Neurosci., 2019, 13, 208.
https://doi.org/10.3389/fncel.2019.00208 |
|
36. Howarth, J. V., Keynes, R. D., and Ritchie, J. M. The origin of the initial heat associated with a single impulse in mammalian non-myelinated nerve fibres. J. Physiol., 1968, 194(3), 745-793.
https://doi.org/10.1113/jphysiol.1968.sp008434 |
|
37. Iwasa, K., Tasaki, I., and Gibbons, R. C. Swelling of nerve fibers associated with action potentials. Science, 1980, 210(4467), 338-339.
https://doi.org/10.1126/science.7423196 |
|
38. Kang, K. H. and Schneider, M. F. Nonlinear pulses at the interface and its relation to state and temperature. Eur. Phys. J. E., 2020, 43, 8.
https://doi.org/10.1140/epje/i2020-11903-x |
|
39. Kaufmann, K. Action Potentials and Electromechanical Coupling in the Macroscopic Chiral Phospholipid Bilayer. Caruaru, 1989. |
|
40. Lundström, I. Mechanical wave propagation on nerve axons. J. Theor. Biol.,1974, 45, 487-499.
https://doi.org/10.1016/0022-5193(74)90127-1 |
|
41. Martinac, B. and Poole, K. Mechanically activated ion channels. Int. J. Biochem. Cell Biol., 2018, 97, 104-107.
https://doi.org/10.1016/j.biocel.2018.02.011 |
|
42. Maugin, G. A. and Engelbrecht, J. A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equilib. Thermodyn., 1994, 19(1), 9-23.
https://doi.org/10.1515/jnet.1994.19.1.9 |
|
43. Maugin, G. A. and Muschik, W. Thermodynamics with internal variables. Part I. General concepts. J. Non-Equilib. Thermodyn., 1994, 19(3), 217-249.
https://doi.org/10.1515/jnet.1994.19.3.217 |
|
44. Meissner, S. T. Proposed tests of the soliton wave model of action potentials, and of inducible lipid pores, and how non-electrical phenomena might be consistent with the Hodgkin-Huxley model. arXiv:1808.07193, 2018. |
|
45. Mueller, J. K. and Tyler, W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol., 2014, 11(5), 051001.
https://doi.org/10.1088/1478-3975/11/5/051001 |
|
46. Mussel, M. and Schneider, M. F. It sounds like an action potential: unification of electrical, chemical and mechanical aspects of acoustic pulses in lipids. arXiv:1806.08551, 2018.
https://doi.org/10.1098/rsif.2018.0743 |
|
47. Nagumo, J., Arimoto, S., and Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE, 1962, 50(10), 2061-2070.
https://doi.org/10.1109/JRPROC.1962.288235 |
|
48. National Research Council. Catalyzing Inquiry at the Interface of Computing and Biology. The National Academies Press, Washington, 2005. |
|
49. Nelson, P. C., Radosavljevic ́, M., and Bromberg, S. Biological physics: Energy, Information, Life. W. H. Freeman & Co, New York, 2004. |
|
50. Noble, D. Biophysics and systems biology. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 2010, 368(1914), 1125-1139.
https://doi.org/10.1098/rsta.2009.0245 |
|
51. Perez-Camacho, M. I. and Ruiz-Suárez, J. C. Propagation of a thermo-mechanical perturbation on a lipid membrane. Soft Matter, 2017, 13(37), 6555-6561.
https://doi.org/10.1039/C7SM00978J |
|
52. Petrov, A. G. Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta, 2006, 568(1-2), 70-83.
https://doi.org/10.1016/j.aca.2006.01.108 |
|
53. Porubov, A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore, 2003.
https://doi.org/10.1142/5238 |
|
54. Ranade, S. S., Syeda, R., and Patapoutian, A. Mechanically activated ion channels. Neuron, 2015, 87(6), 1162-1179.
https://doi.org/10.1016/j.neuron.2015.08.032 |
|
55. Richie, J. M. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol., 1973, 26, 147-187.
https://doi.org/10.1016/0079-6107(73)90019-9 |
|
56. Ritchie, J. M. and Keynes, R. D. The production and absorption of heat associated with electrical activity in nerve and electric organ. Q. Rev. Biophys., 1985, 18(4), 451-476.
https://doi.org/10.1017/S0033583500005382 |
|
57. Rvachev, M. M. On axoplasmic pressure waves and their possible role in nerve impulse propagation. Biophys. Rev. Lett., 2010, 5(2), 73-88.
https://doi.org/10.1142/S1793048010001147 |
|
58. Tamm, K., Engelbrecht, J., and Peets, T. Temperature changes accompanying signal propagation in axons. J. Non-Equilib. Thermodyn., 2019, 44(3), 277-284.
https://doi.org/10.1515/jnet-2019-0012 |
|
59. Tasaki, I. A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR, 1988, 20(4), 251-268. |
|
60. Tasaki, I. and Byrne, P. M. Heat production associated with a propagated impulse in bullfrog myelinated nerve fibers. Jpn. J. Physiol., 1992, 42(5), 805-813.
https://doi.org/10.2170/jjphysiol.42.805 |
|
61. Tasaki, I., Kusano, K., and Byrne, P. M. Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys. J., 1989, 55(6), 1033-1040.
https://doi.org/10.1016/S0006-3495(89)82902-9 |
|
62. Terakawa, S. Potential-dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon. J. Physiol., 1985, 369(1), 229-248.
https://doi.org/10.1113/jphysiol.1985.sp015898 |
|
63. Ván, P., Berezovski, A., and Engelbrecht, J. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn., 2008, 33(3), 235-254.
https://doi.org/10.1515/JNETDY.2008.010 |
|
64. Watanabe, A. Mechanical, thermal, and optical changes of the nerve membrane associated with excitation. Jpn. J. Physiol., 1986, 36(4), 625-643.
https://doi.org/10.2170/jjphysiol.36.625 |
|
65. Yang, Y., Liu, X.-W., Wang, H., Yu, H., Guan, Y., Wang, S., and Tao, N. Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion. ACS Nano, 2018, 12(5), 4186-4193.
https://doi.org/10.1021/acsnano.8b00867
|
|