ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Observables in a spatially flat Planckian universe; pp. 313–318
PDF | https://doi.org/10.3176/proc.2019.3.11

Author
Arved Sapar
Abstract

An evolutionary scenario of processes, especially of the thermodynamic processes, in a perpetually mass-generating Planckian model universe has been studied. This is a Milne-type flat-space, R = ct, model with steady radial mass flow as recently described by us. In this ‘Broadcasting TV’ model universe the rest-mass particles are moving practically with light speed and the neutrinos and photons, both in thermal equilibrium and decoupled states, are moving in (almost) perpendicular directions along the light cones as the frozen-in particles. Therewith the density of radiation has the same dilutional dependence as for the radially squared lowering density of rest-mass particles. In such model universe the horizon problem is avoided automatically, whereas the light-cone photons are moving relative to atomic matter along the logarithmic Archimedes spiral around the mass-generating Planckian source, covering during evolution about 22 cycles. Crucially, the cosmic ‘dark ages’ start at 33.2 times younger age and about 103 times greater densities of matter, leading to much earlier formation of stars and galaxies than in the traditional LCDM cosmology. In the Planckian universe the cosmological principle holds for every epoch, thus removing the anthropocentric principle. The modified critical density in the model is ρ = 8.6·1031cm3. The needed dark matter contribution ρv = 3·1031cm–3 can be provided by neutrinos if their rest energy is 0:16 eV. These correspond to degenerated cooled neutrinos at velocities of the order vF = 104 km/s.

References

Chodorowski, M. J. 2005. Cosmology under Milne’s shadow. ArXiv: astro-ph/0503690v2, 1–5.

Einstein, A. 1916a. Die Grundlage der allgemeinen Relativit¨atstheorie. Annalen der Physik (Ser. 4), 49, 769–822.
https://doi.org/10.1002/andp.19163540702

Einstein, A. 1916b. Ernst Mach. Physikalische Zeitschrift, 17, 101–104.

Friedmann, A. 1922. Über die Krümmung des Raumes. Z. Phys., 10, 377–386.
https://doi.org/10.1007/BF01332580

Friedmann, A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys., 21, 326–332.
https://doi.org/10.1007/BF01328280

Guth, A. H. 1980. Inflationary universe: a possible solution to the horizon and flatness problem. Phys. Rev., D23, 347–356.
https://doi.org/10.1103/PhysRevD.23.347

Hoyle, F. 1948. A new model of expanding universe. MNRAS, 108, 372–382.
https://doi.org/10.1093/mnras/108.5.372

Hoyle, F. 1949. On the cosmological problem. MNRAS, 109, 363–371.
https://doi.org/10.1093/mnras/109.3.365

Lemaître, G. 1931. The beginning of the world from the point of view of quantum theory. Nature, 127, 706.
https://doi.org/10.1038/127706b0

Linde, A. D. 1982. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy, and primordial monopole problems. Phys. Lett. B., 108, 389–393.
https://doi.org/10.1016/0370-2693(82)91219-9

Melia, F. 2012. Fitting the Union2.1 SN sample with the Rh = ct universe. Astron. J., 144, A110, 1–7.

Melia, F. 2013. The Rh =ct universe without inflation. Astron. Astroph., 553, A76, 1–6.
https://doi.org/10.1051/0004-6361/201220447

Melia, F. 2015. On recent clames concerning the Rh = ct universe. MNRAS, 446, 1191–1194.
https://doi.org/10.1093/mnras/stu2181

Melia, F. 2017. The linear growth of structure in the Rh = ct universe. MNRAS, 446, 1191–1194.
https://doi.org/10.1093/mnras/stu2181

Mitra, A. 2014. Why the Rh =ct cosmology is unphysical and in fact a vacuum in disguise like the Milne cosmology. MNRAS, 442, 382–387.
https://doi.org/10.1093/mnras/stu859

Nielsen, J. T., Guffanti, A., and Sarkar, S. 2016. Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep., 6, Article No. 35596; doi:10.1038/srep355596.
https://doi.org/10.1038/srep35596

Penzias, A. A. and Wilson, R. W. 1965a. A measurement of excess antenna temperature at 4080 Mc/s. Ap. J. Lett., 142, 419–421.
https://doi.org/10.1086/148307

Penzias, A. A. and Wilson, R. W. 1965b. A measurement of the flux density of Cas A at 4080 Mc/s. Ap. J. Lett., 142, 1149–1154.
https://doi.org/10.1086/148384

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1998. Measurements of Ω and L from 42 high-redshift supernovae. Ap. J., 517, 565–586.
https://doi.org/10.1086/307221

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Ap. J., 116, 1009–1038.
https://doi.org/10.1086/300499

Robertson, H. P. 1929. On the foundations of relativistic cosmology. Proc. Natl. Acad. Sci. USA, 15, 822–829.
https://doi.org/10.1073/pnas.15.11.822

Sapar, A. 1961. On the relationship between cosmology and microphysics. Publ. Tartu Astrophys. Obs., 33, 223–318.

Sapar, A. 1964. Theory of some observables in the cosmology of uniform universe. Publ. Tartu Astrophys. Obs., 34, 425–444.

Sapar, A. 1976. Quantum phenomena in the early universe. Publ. Tartu Astrophys. Obs., 44, 21–46.
https://doi.org/10.1037/014855

Sapar, A. 1977. Evidence for the fundamental role of Planck units in cosmology. Publ. Tartu Astrophys. Obs., 45, 204–210.

Sapar, A. 2011. Cosmological neutrino background and connected problems. Baltic Astronomy, 20, 267–274.
https://doi.org/10.1515/astro-2017-0291

Sapar, A. 2013. Physical alternative to the dark energy paradigm. Baltic Astronomy, 22, 315–328.
https://doi.org/10.1515/astro-2017-0162

Sapar, A. 2014. Dynamics of cosmic neutrinos in galaxies. Baltic Astronomy, 23, 71–91.
https://doi.org/10.1515/astro-2017-0173

Sapar, A. 2017. A physical model universe without dark energy and dark matter. Proc. Est. Acad. Sci., 66(2), 159–173.
https://doi.org/10.3176/proc.2017.2.06

Sapar, A. 2019. A perpetual mass-generating Planckian Universe. Proc. Est. Acad. Sci., 68(1), 1–12.
https://doi.org/10.3176/proc.2019.1.01

Starobinsky, A. A. 1980. A new type of isotropic cosmological models without singularity. Phys. Lett. B., 99–102.
https://doi.org/10.1016/0370-2693(80)90670-X

Tatum, E. T. 2018. Why Flat space cosmology is superior to standard inflationary cosmology. J. Mod. Phys., 9, 1867–1882.

Tatum, E. T., Seshavatharam, U. V. S., and Lakshminarayana, S. 2015. Flat space cosmology as an alternative to LCDM cosmology. Frontiers Astron. Astrophys. Cosmology, 1, 98–104.

Walker, A. G. 1936. On Milne’s theory of world structure. Proc. London Math. Soc., 42, 90–127.
https://doi.org/10.1112/plms/s2-42.1.90

Wei, J.-J., Wu, X.-E., Melia, F., and Maier, R. S. 2015. A comparative analysis of the supernova legacy survey sample with LCDM and the Rh = ct universe. Astron. J., 149, 102–112.
https://doi.org/10.1088/0004-6256/149/3/102

Back to Issue