ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
On non-unital locally pseudoconvex Q-algebras; pp. 324–332
PDF | https://doi.org/10.3176/proc.2019.3.10

Author
Reyna María Pérez Tiscareño
Abstract

Some equivalent conditions for a topological algebra to be a Q-algebra have been studied by several researchers. They have studied Q-algebras, mainly for unital topological algebras. In this paper some equivalent conditions are studied to be a Q-algebra for non-unital locally pseudoconvex algebras, locally A-pseudoconvex algebras and locally m-pseudoconvex algebras.

References

1. Abel, M. and ˙ Zelazko, W. Properties of TQ-algebras. Proc. Est. Acad. Sci., 2011, 60(3), 141–148.
https://doi.org/10.3176/proc.2011.3.01

2. Abel, M. and Arhippainen, J. Locally m-pseudoconvex topologies on locally A-pseudoconvex algebras. Czech. Math. J., 2004, 54(3), 675–680.
https://doi.org/10.1007/s10587-004-6416-6

3. Arizmendi-Peimbert, H., Perez-Tiscareño, R. M., and Roa-Fajardo, J. On the spectral radii in (Cb(x);b ) and the M(b ) topology. In Proceedings of the International Conference on Topological Algebras and their Applications (ICTAA 2008), Tartu, Estonia, January 24–27, 2008, (Abel, M., ed.). Math. Studies, 4, Est. Math. Soc., Tartu, 2008, 29–33.

4. Balachandran, V. K. Topological Algebras. North-Holland Math. Studies, 185, North-Holland Publ. Co., Amsterdam, 2000.

5. Fragoulopoulou, M. Topological Algebras With Involution. North-Holland Math. Studies 200, Elsevier Science, Amsterdam, 2005.

6. Mallios, A. Topological Algebras. Selected Topics. North-Holland Publ. Co., Amsterdam, 1986.

7. Mascioni, V. Some characterizations of complex normed Q-algebras. El. Math., 1984, 42, 10–14.

8. Palacios, L., Pérez-Tiscareño, R. M., and Signoret, C. On Q-algebras and spectral algebras. Poincare J. Anal. Appl., 2016, I, 21–28.

9. Palmer, T.W. Banach algebras and the general theory of *-algebras, Vol. 1, Encyclopedia of math. and its appl. 49, Cambridge Univ. Press, Cambridge, 1994.
https://doi.org/10.1017/CBO9781107325777

10. Pérez-Tiscareño, R. M. On some characterizations of Q-algebras for unital locally pseudoconvex algebras. Poincare J. Anal. Appl., 2019, 1, 23–30.

11. Pérez-Tiscareño, R. M. When is a unital locally A-pseudoconvex algebra a Q-algebra? In Proceeding of ICTAA 2018, Tallinn, Estonia, January 25–28, 2018 (Abel, M., ed.). Math. Stud., 7, Est. Math. Soc., Tartu, 2018, 112–120.

Back to Issue