ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Properties of chitin extracted from Estonian mushrooms; pp. 333–336
PDF | https://doi.org/10.3176/proc.2019.3.09

Authors
Stephanie Baumgartner, Mihkel Viirsalu, Andres Krumme, James Mendez
Abstract

Fungi contain a significant amount of chitin in their cell walls presenting an attractive source for this commercially significant material. In this study, chitin was extracted from eight different mushroom species native to Estonia. Significant differences in molar mass, chitin content, and fibre size were observed while the degree of acetylation was mostly similar.

References

1. Zeng, J. B. et al. Chitin Whiskers: an overview. Biomacro­molecules, 2012, 13(1), 1−11.
https://doi.org/10.1021/bm201564a

2. Aranaz, I. et al. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 2018, 10(2).
https://doi.org/10.3390/polym10020213

3. Ueno, H., Mori, T., and Fujinaga, T. Topical formulations and wound healing applications of chitosan. Adv. Drug Delivery Rev., 2001, 52(2), 105−115.
https://doi.org/10.1016/S0169-409X(01)00189-2

4. Shields, J. D. O. and Robin, M. The Blue Crab: Diseases, Parasites and Other Symbionts. Faculty Publications from the Harold W. Manter Laboratory of Parasitology, 2003.

5. Lin, N. et al. Preparation of fungus-derived chitin nano­crystals and their dispersion stability evaluation in aqueous media. Carbohydr. Polym., 2017, 173, 610−618.
https://doi.org/10.1016/j.carbpol.2017.06.016

6. Draczynski, Z. Honeybee corpses as an available source of chitin. J. Appl. Polym. Sci., 2008, 109(3), 1974−1981.
https://doi.org/10.1002/app.28356

7. Ifuku, S. et al. Preparation of chitin nanofibers from mush­rooms. Materials, 2011, 4(8), 1417−1425.
https://doi.org/10.3390/ma4081417

8. Mendez, J. D. et al. Optimizing the extraction of chitin from underutilized sources. J. Chitin and Chitosan Sci., 2015, 3(1), 77−80.
https://doi.org/10.1166/jcc.2015.1083

9. Czechowska-Biskup, R. et al. Determination of degree of deacetylation of chitosan − comparision of methods. Prog. Chem. App. Chitin Der., 2012, XVII, 5−20.

10. Domard, A. and Rinaudo, M. Preparation and charac­terization of fully deacetylated chitosan. Int. J. Biol. Macromol., 1983, 5(1), 49−52.
https://doi.org/10.1016/0141-8130(83)90078-8

11. Solomon, O. F. C. and Ciutǎ, I. Z. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J. Appl. Polym. Sci., 1962, 6(24), 683−686.

12. Costa, C. N. et al. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr. Polym., 2015, 133, 245−250.
https://doi.org/10.1016/j.carbpol.2015.06.094

13. Moura, C. M. D. et al. Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chem. Eng. Process. Process Intensif., 2011, 50(4), 351−355.
https://doi.org/10.1016/j.cep.2011.03.003

14. Hwang, K. T. et al. Controlling molecular weight and degree of deacetylation of chitosan by response surface methodology. J. Agric. Food Chem., 2002, 50(7), 1876−1882.
https://doi.org/10.1021/jf011167u

15. Hassainia, A., Satha, H., and Boufi, S. Chitin from Agaricus bisporus: extraction and characterization. Int. J. Biol. Macromol., 2018, 117, 1334−1342.
https://doi.org/10.1016/j.ijbiomac.2017.11.172

16. Arcidiacono, S. and Kaplan, D. L. Molecular weight distribution of chitosan isolated from Mucor rouxii under different culture and processing conditions. Biotechnol. Bioeng., 1992, 39(3), 281−286.
https://doi.org/10.1002/bit.260390305

Back to Issue