ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Experimental study of eddy viscosity for breaking waves on sloping bottom and comparisons with empirical and numerical predictions; pp. 299–312
PDF | https://doi.org/10.3176/proc.2019.3.07

Authors
Nelly Oldekop, Toomas Liiv, Janek Laanearu
Abstract

Focus is on the turbulence for a plunging breaker. Laser Doppler anemometer point measurements were used to determine the velocity matrix of a breaking wave on a sloping bottom. Using the Reynolds stress anisotropy for incompressible fluid, it was found that the ensemble averaged measured velocity predicted eddy viscosity is associated with peaks, which are absent in the broadly accepted empirical predictions. The instantaneous eddy viscosity coefficient was determined according to the Reynolds stresses, modified mean velocity and its gradient components and turbulent kinetic energy. The modified mean velocity and its derivatives improve eddy viscosity predictions during the wave period, which gives evidence that the velocity used corresponds well to a rotational part. In addition to the measurement predictions, empirical formulae were used to estimate the eddy viscosity values during the wave period. Furthermore, a meshless numerical model is proposed to determine artificial viscosity and demonstrate its dependence on eddy viscosity in the case of weakly compressible fluid.

References

Batchelor, G. K. 1967. An Introduction to fluid dynamics. Cambridge University Press, Cambridge, United Kingdom.

Battjes, J. A. 1988. Surf-zone dynamics. Annu. Rev. Fluid Mech., 20, 257–291.
https://doi.org/10.1146/annurev.fl.20.010188.001353

Bertin, J. J., Periaux, J., and Ballmann, J. 1992. Advances in Hypersonics. Modeling Hypersonic Flows. – Volume 2. Birkhäuser, Boston, USA.
https://doi.org/10.1007/978-1-4612-0371-1

Briganti, R., Musumeci, R. E., Bellotti, G., Brocchini, M., and Foti, E. 2004. Boussinesq modeling of breaking waves: description of turbulence. J. Geophys. Res., 109(C0701).
https://doi.org/10.1029/2003JC002065

Canuto, V. M. and Cheng, Y. 1997. Determination of the Smagorinsky-Lilly constant CS. Phys. Fluids, 9, 1368.
https://doi.org/10.1063/1.869251

Capone, T., Panizzo, A., and Monaghan, J. J. 2010. SPH modelling of water waves generated by submarine landslides. J. Hydraul. Res., 48, 80–84.
https://doi.org/10.1080/00221686.2010.9641248

Chang, K.-A. and Liu, P. L.-F. 1999. Experimental investigation of turbulence generated by breaking waves in water of intermediate depth. Phys. Fluids, 11, 3339–3400.
https://doi.org/10.1063/1.870198

Dalrymple, R. A. and Rogers, B. D. 2006. Numerical modelling of water waves with the SPH method. Coastal Eng., 53, 141–147.
https://doi.org/10.1016/j.coastaleng.2005.10.004

Davies, A. G. and Villaret, C. 1999. Eulerian drift induced by progressive waves above rippled and very rough beds. J. Geophys. Res., 104(C1), 1465–1488.
https://doi.org/10.1029/1998JC900016

De Padova, D., Dalrymple, R. A., Mossa, M., and Petrillo, A. F. 2009. SPH simulations of regular and irregular waves and their comparison with experimental data. arXiv:0911.1872v1

Fredsøe, J. and Deigaard, R. 1992. Mechanics of coastal sediment transport. Advanced Series on Ocean Engineering – Volume 3. World Scientific Publishing, Singapore.
https://doi.org/10.1142/9789812385314

Gomez-Gesteira, M., Rogers, B. D., Dalrymple, R. A., and Crespo, A. J. C. 2010. State-of-the-art of classical SPH for free-surface flows. J. Hydraul. Res., 48, 6–27.
https://doi.org/10.1080/00221686.2010.9641242

Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. 2011. A parallel SPH implementation on multi-core CPUs. Comput. Graphics Forum, 30(1), 99–112.
https://doi.org/10.1111/j.1467-8659.2010.01832.x

Laanearu, J., Koppel, T., Soomere, T., and Davies, P. A. 2007. Joint influence of river stream, water level and wind waves on the height of sand bar in a river mouth. Nord. Hydrol., 38(3), 287–302.
https://doi.org/10.2166/nh.2007.012

Laanearu, J., Vassiljev, A., and Davies, P. A. 2011. Hydraulic modelling of stratified bi-directional flow in a river mouth. In Proceedings of the Institution of Civil Engineers: Engineering and Computational Mechanics, 164(4), 207–216.
https://doi.org/10.1680/eacm.2011.164.4.207

Launder, B. E. and Sharma, B. I. 1974. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer, 1(2), 131–138.
https://doi.org/10.1016/0094-4548(74)90150-7

Lee, E. S., Violeau, D., Issa, R., and Ploix, S. 2010. Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. J. Hydraul. Res., 48, 50–60.
https://doi.org/10.1080/00221686.2010.9641245

Liiv, T. 2007. An experimental investigation of the oscillatory boundary layer around the breaking point. Proc. Est. Acad. Sci., 13(3), 215–233.

Liiv, T. and Lagemaa, P. 2008. The variation of the velocity and turbulent kinetic energy field in the wave in the vicinity of the breaking point. Est. J. Eng., 14(1), 42–64.
https://doi.org/10.3176/eng.2008.1.04

Lundgren, H. and Sorensen, T. 1958. A pulsating water tunnel. In Proceedings 6th Coastal Engineering Conference, ASCE, 356–358.

Madsen, O. S. and Grant, W. D. 1976. Quantitative description of sediment transport by waves. Coastal Eng. Proc., 1(15), 1093–1112.
https://doi.org/10.9753/icce.v15.64

Malarkey, J. and Davies, A. G. 2004. An eddy viscosity formulation for oscillatory flow over vortex ripples. J. Geophys. Res., 109, C12016.
https://doi.org/10.1029/2003JC002086

Monaghan, J. J. 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys., 30, 543–574.
https://doi.org/10.1146/annurev.aa.30.090192.002551

Monaghan, J. J. 1994. Simulating free surface flows with SPH. J. Comput. Phys., 110, 399–406.
https://doi.org/10.1006/jcph.1994.1034

Monaghan, J. J. 2000. SPH without a Tensile Instability. J. Comput. Phys., 159, 290–311.
https://doi.org/10.1006/jcph.2000.6439

Morris, J. P. 2000. Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids, 33(3), 333–353.
https://doi.org/10.1002/1097-0363(20000615)33:3<333::AID-FLD11>3.0.CO;2-7

Oldekop, N. and Liiv, T. 2013. Measurement of the variation of shear velocity on bed during a wave cycle. J. Earth Sci. Eng., 3(5), 322–330.

Oldekop, N., Liiv, T., and Lagemaa, P. 2015. The variation of turbulent eddy viscosity during a wave cycle. E-Proceedings of the 36th IAHR World Congress, June 28–July 3, 2015, Hague, Netherlands, 1−5.

Peregrine, D. H. 1983. Breaking waves on beaches. Annu. Rev. Fluid Mech., 15, 149–178.
https://doi.org/10.1146/annurev.fl.15.010183.001053

Perrier, G., Villaret, C., Davies, A. G., and Hansen, E. A. 1995. Numerical modelling of the oscillatory boundary layer over ripples. MAST G8-M Coastal Morphodynamics Project, Final Overall Meeting, Delft Hydraul., Gdansk, Poland, 4.26–4.29.

Rodi, W. 1980. Turbulence models and their application in hydraulics – A state of the art review. International Association for Hydraulic Research, Delft.

Rogers, B. D., Dalrymple, R. A., and Stansby, P. K. 2010. Simulation of caisson breakwater movement using SPH. J. Hydraul. Res., 48, 135–141.
https://doi.org/10.1080/00221686.2010.9641254

Rosswog, S. 2015. SPH methods in the modelling of compact objects. Living Rev. Comput. Astrophys., 1(1).
https://doi.org/10.1007/lrca-2015-1

Shao, S. 2006. Simulation of breaking wave by SPH method coupled with k – ε model. J. Hydraul. Res., 44(3), 338–349.
https://doi.org/10.1080/00221686.2006.9521686

Shih, T.-H., Zhu, J., and Lumley, J. L. 1996. Calculation of wall-bounded complex flows and free shear flows. Int. J. Numer. Methods Fluids, 23, 1133–1144.
https://doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1133::AID-FLD456>3.0.CO;2-A

Svendsen, I. A. and Putrevu, V. 1996. Surf-zone hydrodynamics. Adv. Coastal Ocean Eng., 2, 1–78.
https://doi.org/10.1142/9789812797575_0001

Ting, F. C. K. and Kirby, J. T. 1994. Observation of undertow and turbulence in a laboratory surf zone. Coastal Eng., 24, 51–80.
https://doi.org/10.1016/0378-3839(94)90026-4

Ting, F. C. K. and Kirby, J. T. 1995. Dynamics of surf-zone turbulence in a strong plunging breaker. Coastal Eng., 24, 177–204.
https://doi.org/10.1016/0378-3839(94)00036-W

Ting, F. C. K. and Kirby, J. T. 1996. Dynamics of surf-zone turbulence in a spilling breaker. Coastal Eng., 27, 131–160.
https://doi.org/10.1016/0378-3839(95)00037-2

Violeau, D. and Rogers, B. D. 2016. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J. Hydraul. Res., 54(1), 1–26.
https://doi.org/10.1080/00221686.2015.1119209

Back to Issue