The propagation of signals in nerves is characterized by complexity where the interactions between the electrical signal and accompanying mechanical and thermal effects must be taken into account. That is why in the modelling of wave phenomena the knowledge from physiology, physics, and mathematics must be cast into a whole. In this paper the wave phenomena in nerves are characterized from the viewpoint of complexity and interdisciplinarity, followed by the analysis of principles and criteria in the modelling of biological systems. The central part is the description of the step-by-step approach in building up a coupled mathematical model of signal propagation in axons. Attention is paid to the coupling forces which link the single waves into an ensemble. The mathematical description of the model is presented in the Appendix.
1. Andersen, S. S., Jackson, A. D., and Heimburg, T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol., 2009, 88(2), 104–113.
https://doi.org/10.1016/j.pneurobio.2009.03.002
2. Berezovski, A., Engelbrecht, J., and V´an, P. Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech., 2014, 84(9–11), 1249–1261.
https://doi.org/10.1007/s00419-014-0858-6
3. Clay, J. R. Axonal excitability revisited. Prog. Biophys. Mol. Biol., 2005, 88(1), 59–90.
https://doi.org/10.1016/j.pbiomolbio.2003.12.004
4. Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91(2), 555–602.
https://doi.org/10.1152/physrev.00048.2009
5. Drukarch, B., Holland, H. A., Velichkov, M., Geurts, J. J., Voorn, P., Glas, G., and de Regt, H.W. Thinking about the nerve impulse: a critical analysis of the electricitycentered conception of nerve excitability. Prog. Neurobiol., 2018, 169, 172–185.
https://doi.org/10.1016/j.pneurobio.2018.06.009
6. Engelbrecht, J. On theory of pulse transmission in a nerve fibre. Proc. R. Soc. A Math. Phys. Eng. Sci., 1981, 375(1761), 195–209.
https://doi.org/10.1098/rspa.1981.0047
7. Engelbrecht, J. Nonlinear wave motion and complexity. Proc. Estonian Acad. Sci., 2010, 59(2), 66–71.
https://doi.org/10.3176/proc.2010.2.02
8. Engelbrecht, J. Complexity in engineering and natural sciences. Proc. Estonian Acad. Sci., 2015, 64(3), 249–255.
https://doi.org/10.3176/proc.2015.3.07
9. Engelbrecht, J., Berezovski, A., and Soomere, T. Highlights in the research into complexity of nonlinear waves. Proc. Estonian Acad. Sci., 2010, 59(2), 61–65.
https://doi.org/10.3176/proc.2010.2.01
10. Engelbrecht, J., Peets, T., and Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol., 2018, 17(6), 1771–1783.
https://doi.org/10.1007/s10237-018-1055-2
11. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M., and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28–38.
https://doi.org/10.3176/proc.2017.4.28
12. Engelbrecht, J., Tamm, K., and Peets, T. On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol., 2015, 14(1), 159–167.
https://doi.org/10.1007/s10237-014-0596-2
13. Engelbrecht, J., Tamm, K., and Peets, T. Modeling of complex signals in nerve fibers. Med. Hypotheses, 2018, 120, 90–95.
https://doi.org/10.1016/j.mehy.2018.08.021
14. Engelbrecht, J., Vendelin, M., and Maugin, G. A. Hierarchical internal variables reflecting microstructural properties: application to cardiac muscle contraction. J. Non-Equilibrium Thermodyn., 2000, 25(2), 119–130.
https://doi.org/10.1515/JNETDY.2000.008
15. Érdi, P. Complexity Explained. Springer Science & Business Media, Berlin, 2007.
16. Eringen, A. C. Nonlinear Theory of Continuous Media. McGraw-Hill Book Company, New York, 1962.
17. Gavaghan, D., Garny, A., Maini, P. K., and Kohl, P. Mathematical models in physiology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2006, 364(1842), 1099–1106.
https://doi.org/10.1098/rsta.2006.1757
18. Heimburg, T. and Jackson, A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9790–9795.
https://doi.org/10.1073/pnas.0503823102
19. Hodgkin, A. and Huxley, A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4), 500–544.
https://doi.org/10.1113/jphysiol.1952.sp004764
20. Hodgkin, A. L. The Conduction of Nervous Impulse. Liverpool University Press, 1964.
21. Kohl, P., Crampin, E. J., Quinn, T. A., and Noble, D. Systems biology: an approach. Clin. Pharmacol. Ther., 2010, 88(1), 25–33.
https://doi.org/10.1038/clpt.2010.92
22. Kuhn, T. S. The structure of scientific revolutions. Am. Anthropol., 1962. 23. Lieberstein, H. On the Hodgkin-Huxley partial differential equation. Math. Biosci., 1967, 1(1), 45–69.
https://doi.org/10.1016/0025-5564(67)90026-0
24. Maugin, G. A. Material Inhomogeneities in Elasticity. Chapman & Hall, London, 1993.
https://doi.org/10.1007/978-1-4899-4481-8
25. Maugin, G. A. Infernal variables and dissipative structures. J. Non-Equilibrium Thermodyn., 1990, 15(2), 173–192.
https://doi.org/10.1515/jnet.1990.15.2.173
26. Maugin, G. A. and Engelbrecht, J. A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equilibrium Thermodyn., 1994, 19(1), 9–23.
https://doi.org/10.1515/jnet.1994.19.1.9
27. McCulloch, A. D. and Huber, G. Integrative biological modelling in silico. In ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (Bock, G. and Goode, J. A., eds). John Wiley & Sons, Chichester, 2002, 4–25.
https://doi.org/10.1002/0470857897.ch2
28. Mueller, J. K. and Tyler, W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol., 2014, 11(5), 051001
https://doi.org/10.1088/1478-3975/11/5/051001
29. Nagumo, J., Arimoto, S., and Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE, 1962, 50(10), 2061–2070.
https://doi.org/10.1109/JRPROC.1962.288235
30. Nicolis, G. and Nicolis, C. Foundations of Complex Systems:Emergence, Information and Predicition. World Scientific, Singapore, 2012.
https://doi.org/10.1142/9789814366618
31. Noble, D. Chair’s introduction. In ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (Bock, G. and Goode, J. A., eds). JohnWiley & Sons, Chichester, 2002, 1–3.
32. Noble, D. Biophysics and systems biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2010, 368(1914), 1125–1139.
https://doi.org/10.1098/rsta.2009.0245
33. Porubov, A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore, 2003.
https://doi.org/10.1142/5238
34. Rodeman, R. The Oxford Handbook of Interdisciplinarity. Oxford University Press, Oxford, 2017.
https://doi.org/10.1093/oxfordhb/9780198733522.001.0001
35. Scott, A. C. The Nonlinear Universe. Chaos, Emergence, Life. Springer, Berlin, Heidelberg, 2010.
36. Stewart, I. In Pursuit of the Unknown: 17 Equations That Changed the World. Profile Books, London, 2013.
37. Tamm, K., Engelbrecht, J., and Peets, T. Temperature changes accompanying signal propagation in axons. arXiv:1812.02296 [physics.bio-ph], 2018.
https://doi.org/10.1515/jnet-2019-0012
38. Tasaki, I. A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR, 1988, 20(4), 251–268.
39. Tasaki, I. and Byrne, P. M. Heat production associated with a propagated impulse in bullfrog myelinated nerve fibers. Jpn. J. Physiol., 1992, 42(5), 805–813.
https://doi.org/10.2170/jjphysiol.42.805
40. Terakawa, S. Potential-dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon. J. Physiol., 1985, 369(1), 229–248.
https://doi.org/10.1113/jphysiol.1985.sp015898
41. Wooley, J. C. and Lin, H. S. Catalyzing Inquiry at the Interface of Computing and Biology. The National Academies Press, Washington, 2005.