ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Graphene/SiC dies for electrochemical blood-type sensing; pp. 207–213
PDF | https://doi.org/10.3176/proc.2019.2.13

Authors
Alexander Usikov, Konstantin Borodkin, Sergey Novikov, Alexander Roenkov, Andrei Goryachkin, Mikhail Puzyk, Iosif Barash, Sergey Lebedev, Alexander Zubov, Yuri Makarov, Alexander Lebedev
Abstract

We discuss graphene-on-SiC dies for blood-type sensing. For the sensor application, chemical species to be detected adsorb on the graphene surface and act as electron donors or acceptors resulting in resistance changes of the graphene channel. In this work, graphene films were formed on 4H-SiC substrates by thermal decomposition of the (0001) silicon surface in Ar ambient at a high temperature of 1800–2000 oC. The graphene functionalization was performed by the covalent bonding of a nitrophenyl group (C6H5NO2) followed by its reduction to a phenylamine group (C6H5NH2) by using a cyclic voltammetry process. There was a clear and prompt response (current change) of the antibody-coated graphene/SiC dies when the blood antigen matched the antibody. No response occurred when the antibody on the graphene surface mismatched the blood antigen. The experiments demonstrated that a functionalized graphene-on-SiC die has capability in blood sensing, opening a way to manufacture biosensors for detecting blood types and for other applications.

References

1. Liu, Y., Dong, X., and Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev., 2012, 41, 2283–2307.
https://doi.org/10.1039/C1CS15270J

2. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., and Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater., 2007, 6, 652–655.
https://doi.org/10.1038/nmat1967

3. Novikov, S., Lebedeva, N., Satrapinski, A., Walden, J., Davydov, V., and Lebedev, A. Graphene based sensor for environmental monitoring of NO2. Sensor. Actuat. B-Chem., 2016, 236, 1054–1060.
https://doi.org/10.1016/j.snb.2016.05.114

4. Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K. C., et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev., 2012, 112, 6156–6214.
https://doi.org/10.1021/cr3000412

5. Tehrani, Z., Burwell, G., Mohd Azmi, M. A., Castaing, A., Rickman, R., Almarashi, J., et al. Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Mater., 2014, 1, 025004.
https://doi.org/10.1088/2053-1583/1/2/025004

6. Ryan, K. J. and Ray, C. J. G. (eds). Sherris Medical Microbiology: An Introduction to Infectious Diseases. McGraw-Hill, New York, 2004.

7. Chareonsirisuthigul, T., Khositnithikul, R., Intaramat, A., Inkomlue, R., Sriwanichrak, K., Piromsontikorn, S., et al. Performance comparison of immunodiffusion, enzyme-linked immunosorbent assay, immunochromato­graphy and hemagglutination for serodiagnosis of human pythiosis. Diagn. Micr. Infec. Dis., 2013, 76, 42–45.
https://doi.org/10.1016/j.diagmicrobio.2013.02.025

8. Birhanu, H., Rogé, S., Simon, T., Baelmans, R., Gebrehiwot, T., Goddeeris, B. M., and Büscher, P. Surra Sero K-SeT, a new immunochromatographic test for serodiagnosis of Trypanosoma evansi infection in domestic animals. Vet. Parasitol., 2015, 211, 3, 153–157.
https://doi.org/10.1016/j.vetpar.2015.05.008

9. Grimaldi, G. Jr., Teva, A., Ferreira, A. L., dos Santos, C. B., Pinto, I. d.-S., de-Azevedo, C. T., and Falqueto, A. Evaluation of a novel chromatographic immunoassay based on Dual-Path Platform technology (DPP® CVL rapid test) for the serodiagnosis of canine visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 2012, 106, 1, 54–59.
https://doi.org/10.1016/j.trstmh.2011.10.001

10. Saghrouni, F., Gaïed-Meksi, S., Fathallah, A., Amri, F., Ach, H., Guizani, I., and Saïd, M. B. Immuno­chromato­graphic rK39 strip test in the serodiagnosis of visceral leishmaniasis in Tunisia. Trans. R. Soc. Trop. Med. Hyg., 2009, 103, 1273–1278.
https://doi.org/10.1016/j.trstmh.2008.10.034

11. ISBT. Red Cell Immunogenetics and Blood Group Terminology. http://www.isbtweb.org/working-parties/ red-cell-immunogenetics-and-blood-group-terminology (accessed 2019-04-15).

12. Davydov, V. Yu., Usachov, D., Lebedev, S., Smirnov, A. N., Levitskii, V., Eliseyev, I., et al. Study of the crystal and electronic structure of graphene films grown on 6H-SiC (0001). Semiconductors, 2017, 51, 1072–1080.
https://doi.org/10.1134/S1063782617080073

13. Reid, M. E. and Lomas-Francis, C. The Blood Group Antigen Facts Book. Second ed. Academic Press, New York, 2003.
https://doi.org/10.1016/B978-012586585-2/50014-7

14. Yu, S. S. C., Tan, E. S. Q., Jane, R. T., and Downard, A. J. An electrochemical and XPS study of reduction of nitrophenyl films covalently grafted to planar carbon surfaces. Langmuir, 2007, 23, 11074–11082.
https://doi.org/10.1021/la701655w

 

Back to Issue