ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Advanced sensing materials based on molecularly imprinted polymers towards developing point-of-care diagnostics devices; pp. 158–167
PDF | https://doi.org/10.3176/proc.2019.2.07

Authors
Anna Kidakova, Jekaterina Reut, Roman Boroznjak, Andres Öpik, Vitali Syritski
Abstract

Today there is growing interest in the replacement of biological receptors in biosensing systems including point-of-care (PoC) diagnostics devices due to their high price and short shelf life. Molecularly imprinted polymers (MIPs), which are wholly synthetic materials with antibody-like ability to bind and discriminate between molecules, demonstrate improved stability and reduced fabrication cost as compared with biological receptors. Here we report, for the first time, a MIP-based synthetic receptor capable of selective binding of a clinically relevant protein – the brain-derived neurotrophic factor (BDNF). The BDNF-MIP was generated by surface-initiated controlled/living radical photopolymerization directly on a screen-printed electrode (SPE). The resulting BDNF-MIP/SPE electrochemical sensor could detect BDNF down to 6 pg/mL in the presence of the interfering HSA protein and was capable of discriminating BDNF among its structural analogues, i.e. neurotropic factors CDNF and MANF. We believe that the presented approach for the preparation of a neurotrophic factor-selective sensor could be a promising route towards the development of innovative PoC diagnostics devices for the early-stage diagnostics and/or monitoring the therapy of neurological diseases

References

1. Larsson , A. , Greig-Pylypczuk , R. , and Huisman , A. The state of point-of-care testing: a European perspective. Ups. J. Med. Sci., 2015 , 120 , 1-10.
https://doi.org/10.3109/03009734.2015.1006347

2. McMullan , J. T. , Knight , W. A. , Clark , J. F. , Beyette , F. R. , and Pancioli , A. Time-critical neurological emergencies: the unfulfilled role for point-of-care testing. Int. J. Emer. Med., 2010 , 3 , 127-131.
https://doi.org/10.1007/s12245-010-0177-9

3. Wei , T-Y. , Fu , Y. , Chang , K-H. , Lin , K-J. , Lu , Y-J. , and Cheng , C-M. Point-of-care devices using disease biomarkers to diagnose neurodegenerative disorders. Trends Biotechnol., 2018 , 36 , 290-303.
https://doi.org/10.1016/j.tibtech.2017.11.004

4. Piletsky , S. A. and Whitcombe , M. J. (eds). Designing Receptors for the Next Generation of Biosensors. Springer-Verlag , Berlin , 2013.
https://doi.org/10.1007/978-3-642-32329-4

5. Mahon , C. S. and Fulton , D. A. Mimicking nature with synthetic macromolecules capable of recognition. Nat. Chem., 2014 , 6 , 665-672.
https://doi.org/10.1038/nchem.1994

6. Mosbach , K. Molecular imprinting. Trends Biochem. Sci., 1994 , 19 , 9-14.
https://doi.org/10.1016/0968-0004(94)90166-X

7. Tretjakov , A. , Syritski , V. , Reut , J. , Boroznjak , R. , and Öpik , A. Molecularly imprinted polymer film interfaced with Surface Acoustic Wave technology as a sensing platform for label-free protein detection. Anal. Chim. Acta, 2016 , 902 , 182-188.
https://doi.org/10.1016/j.aca.2015.11.004

8. Cieplak , M. and Kutner , W. Artificial biosensors: How can molecular imprinting mimic biorecognition? Trends Biotechnol., 2016 , 34 , 922-941.
https://doi.org/10.1016/j.tibtech.2016.05.011

9. Haupt , K. and Mosbach , K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev., 2000 , 100 , 2495-2504.
https://doi.org/10.1021/cr990099w

10. Ye , L. and Mosbach , K. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater., 2008 , 20 , 859-868.
https://doi.org/10.1021/cm703190w

11. Espinoza-Casta-eda , M. , Escosura-Mu-iz , A. d. l. , Chamorro , A. , Torres , C. d. , and Merkoçi , A. Nano¬channel array device operating through Prussian blue nanoparticles for sensitive label-free immunodetection of a cancer biomarker. Biosens. Bioelectron., 2015 , 67 , 107-114.
https://doi.org/10.1016/j.bios.2014.07.039

12. Tran , H. V. , Piro , B. , Reisberg , S. , Huy Nguyen , L. , Dung Nguyen , T. , Duc , H. T. , and Pham , M. C. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens. Bioelectron., 2014 , 62 , 25-30.
https://doi.org/10.1016/j.bios.2014.06.014

13. Tonello , S. , Serpelloni , M. , Lopomo , N. F. , Sardini , E. , Abate , G. , and Uberti , D. L. (eds). Preliminary Study of a Low-Cost Point-of-Care Testing System Using Screen-Printed Biosensors: For Early Biomarkers Detection Related to Alzheimer Disease. IEEE International Symposium on Medical Measurements and Applications (MeMeA), 15-18 May 2016.

14. Lopes , F. , Pacheco , J. G. , Rebelo , P. , and Delerue-Matos , C. Molecularly imprinted electrochemical sensor prepared on a screen printed carbon electrode for naloxone detection. Sensor. Actuat. B-Chem., 2017 , 243 , 745-752.

15. Ribeiro , J. A. , Pereira , C. M. , Silva , A. F. , and Sales , M. G. F. Electrochemical detection of cardiac biomarker myoglobin using polyphenol as imprinted polymer receptor. Anal. Chim. Acta , 2017 , 981 , 41-52.
https://doi.org/10.1016/j.aca.2017.05.017

16. WHO. Neurological Disorders: Public Health Challenges. World Health Organization , Geneva , Switzerland , 2006.

17. Cattaneo , A. , Cattane , N. , Begni , V. , Pariante , C. M. , and Riva , M. A. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psych., 2016 , 6 , e958.
https://doi.org/10.1038/tp.2016.214

18. Hashimoto , K. Brain-derived neurotrophic factor as a biomarker for mood disorders: an historical overview and future directions. Psychiat. Clin. Neuros., 2010 , 64 , 341-357.
https://doi.org/10.1111/j.1440-1819.2010.02113.x

19. Lindahl , M. , Saarma , M. , and Lindholm , P. Unconventional neurotrophic factors CDNF and MANF: structure , physiological functions and therapeutic potential. Neurobiol. Dis., 2017 , 97 , 90-102.
https://doi.org/10.1016/j.nbd.2016.07.009

20. Lindholm , D. , Mäkelä , J. , Di Liberto , V. , Mudò , G. , Belluardo , N. , Eriksson , O. , and Saarma , M. Current disease modifying approaches to treat Parkinson's disease. Cell. Mol. Life Sci., 2016 , 73 , 1365-1379.
https://doi.org/10.1007/s00018-015-2101-1

21. Laske , C. , Stransky , E. , Leyhe , T. , Eschweiler , G. W. , Wittorf , A. , Richartz , E. , et al. Stage-dependent BDNF serum concentrations in Alzheimer's disease. J. Neural Transm., 2006 , 113 , 1217-1224.
https://doi.org/10.1007/s00702-005-0397-y

22. Sen , S. , Duman , R. , and Sanacora , G. Serum brain-derived neurotrophic factor , depression , and anti¬depressant medications: meta-analyses and implications. Biol. Psychiat., 2008 , 64 , 527-532.
https://doi.org/10.1016/j.biopsych.2008.05.005

23. Wang , Y. , Liu , H. , Zhang , B.-S. , Soares , J. C. , and Zhang , X. Y. Low BDNF is associated with cognitive impairments in patients with Parkinson's disease. Parkinsonism Relat. D., 2016 , 29 , 66-71.
https://doi.org/10.1016/j.parkreldis.2016.05.023

24. Jolly , P. , Tamboli , V. , Harniman , R. L. , Estrela , P. , Allender , C. J. , and Bowen , J. L. Aptamer-MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosens. Bioelectron., 2016 , 75 , 188-195.
https://doi.org/10.1016/j.bios.2015.08.043

25. Viswanathan , S. , Rani , C. , Ribeiro , S. , and Delerue-Matos , C. Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker. Biosens. Bioelectron., 2012 , 33 , 179-183.
https://doi.org/10.1016/j.bios.2011.12.049

26. Wang , Y. T. , Zhang , Z. Q. , Jain , V. , Yi , J. J. , Mueller , S. , Sokolov , J. , et al. Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sensor. Actuat. B-Chem., 2010 , 146 , 381-387.
https://doi.org/10.1016/j.snb.2010.02.032

27. Moreira , F. T. C. , Sharma , S. , Dutra , R. A. F. , Noronha , J. P. C. , Cass , A. E. G. , and Sales , M. G. F. Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sensor. Actuat. B-Chem., 2014 , 196 , 123-132.
https://doi.org/10.1016/j.snb.2014.01.038

28. Shumyantseva , V. V. , Bulko , T. V. , Sigolaeva , L. V. , Kuzikov , A. V. , and Archakov , A. I. Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine for selective recognition and direct electrochemical detection of myoglobin. Biosens. Bioelectron., 2016 , 86 , 330-336.
https://doi.org/10.1016/j.bios.2016.05.101

29. Silva , B. V. M. , Rodriguez , B. A. G. , Sales , G. F. , Sotomayor , M. D. T. , and Dutra , R. F. An ultra¬sensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer. Biosens. Bioelectron., 2016 , 77 , 978-985.
https://doi.org/10.1016/j.bios.2015.10.068

30. Urraca , J. L. , Aureliano , C. S. A. , Schillinger , E. , Esselmann , H. , Wiltfang , J. , and Sellergren , B. Polymeric complements to the Alzheimer's disease biomarker β-amyloid isoforms Aβ1-40 and Aβ1-42 for blood serum analysis under denaturing conditions. J. Am. Chem. Soc., 2011 , 133 , 9220-9223.
https://doi.org/10.1021/ja202908z

31. Cecchini , A. , Raffa , V. , Canfarotta , F. , Signore , G. , Piletsky , S. , MacDonald , M. P. , and Cuschieri , A. In vivo recognition of human vascular endothelial growth factor by molecularly imprinted polymers. Nano Lett., 2017 , 17 , 2307-2312.
https://doi.org/10.1021/acs.nanolett.6b05052

32. Kamon , Y. and Takeuchi , T. Molecularly imprinted nanocavities capable of ligand-binding domain and size/shape recognition for selective discrimination of vascular endothelial growth factor isoforms. ACS Sensors, 2018 , 3 , 580-586.
https://doi.org/10.1021/acssensors.7b00622

33. Johari-Ahar , M. , Karami , P. , Ghanei , M. , Afkhami , A. , and Bagheri , H. Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy. Biosens. Bioelectron., 2018 , 107 , 26-33.
https://doi.org/10.1016/j.bios.2018.02.005

34. Salian , V. D. , White , C. J. , and Byrne , M. E. Molecularly imprinted polymers via living radical polymerization: relating increased structural homogeneity to improved template binding parameters. React. Funct. Polym., 2014 , 78 , 38-46.
https://doi.org/10.1016/j.reactfunctpolym.2014.02.003

35. Kidakova , A. , Reut , J. , Rappich , J. , Öpik , A. , and Syritski , V. Preparation of a surface-grafted protein-selective polymer film by combined use of controlled/living radical photopolymerization and microcontact imprinting. React. Funct. Polym., 2018 , 125 , 47-56.
https://doi.org/10.1016/j.reactfunctpolym.2018.02.004

36. De Boer , B. , Simon , H. K. , Werts , M. P. L. , Vegte , E. W. van der , and Hadziioannou , G. "Living" free radical photopolymerization initiated from surface-grafted iniferter monolayers. Macromolecules, 2000 , 33 , 349-356.
https://doi.org/10.1021/ma9910944

37. Ahmad , R. , Mocaer , A. , Gam-Derouich , S. , Lamouri , A. , Lecoq , H. , Decorse , P. , et al. Grafting of polymeric platforms on gold by combining the diazonium salt chemistry and the photoiniferter method. Polymer, 2015 , 57 , 12-20.
https://doi.org/10.1016/j.polymer.2014.12.007

38. Roy , A. , Gao , J. , Bilbrey , J. A. , Huddleston , N. E. , and Locklin , J. Rapid electrochemical reduction of Ni(II) generates reactive monolayers for conjugated polymer brushes in one step. Langmuir, 2014 , 30 , 10465-10470.
https://doi.org/10.1021/la502050n

39. Pinson , J. and Podvorica , F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev., 2005 , 34 , 429-439.
https://doi.org/10.1039/b406228k

40. Anothumakkool , B. , Guyomard , D. , Gaubicher , J. , and Madec , L. Interest of molecular functionalization for electrochemical storage. Nano Res., 2017 , 10 , 4175-4200.
https://doi.org/10.1007/s12274-017-1797-7

41. Jian , W. , Firestone , M. A. , Auciello , O. , and Carlisle , J. A. Surface functionalization of ultra¬nanocrystalline diamond films by electrochemical reduction of aryldiazonium salts. Langmuir, 2004 , 20 , 11450-11456.
https://doi.org/10.1021/la048740z

42. Verheyen , E. , Schillemans , J. P. , van Wijk , M. , Demeniex , M. A. , Hennink , W. E. , and van Nostrum , C. F. Challenges for the effective molecular imprinting of proteins. Biomaterials, 2011 , 32 , 3008-3020.
https://doi.org/10.1016/j.biomaterials.2011.01.007

 

Back to Issue