ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Comparison of the biomechanics and fixation index of crosslinking between lysyl oxidase and genipin on guinea pig sclera, an animal model of defocus-induced high myopia; pp. 214–221
PDF | https://doi.org/10.3176/proc.2019.2.03

Authors
Min Wang, Zhikuan Yang, Ruiqin Li, Hua Fan, Yu Liu
Abstract

The aim of this study was to investigate the crosslinking effect of lysyl oxidase (LOX) alone and in combination with genipin (GNP) on the sclera of myopic eyes.
A total of 116 guinea pigs were used in this study. Among them, 16 guinea pigs were used as normal controls. The others were established as a lens-induced myopia model. The study included 80 guinea pigs with myopia higher than –6.0D. There were 12 groups of guinea pigs (A–L). Groups A and B included guinea pigs with normal eyes treated with saline and 0.1% LOX, respectively. Groups C, D, E, F, G, H, I, J, K, and L had myopic eyes. Groups C, D, E, and F were treated with saline, 0.1% LOX, 0.5% LOX, and 1% LOX, respectively. Groups G, H, and I were treated with 0.1% LOX + 1% GNP, 0.5% LOX + 1% GNP, and 1% LOX + 1% GNP, respectively, and allowed to react for 4 h. Groups J and K were treated with 1% LOX + 1% GNP for 8 h and 12 h, respectively. Group L was treated with 1% GNP for 4 h. The biomechanical features and fixation index of crosslinking between the groups and among 16 eyes in each group were compared. The isolated sclerae were treated with various agents in vitro. The elastic modulus and tensile strength of the sclerae were measured in 10 eyes from each group using an electronic microtensile machine. Samples from the other six eyes of each group were used to determine the fixation index via a ninhydrin assay.
Significant differences were observed in the elastic modulus and tensile strength measurements between groups A (saline) and B (0.1% LOX) with normal eyes (< 0.05), between groups C (saline) and D (0.1% LOX) with myopic eyes (P < 0.05), and between group C (saline) and groups D (0.1% LOX), E (0.5% LOX), and F (1% LOX) (P < 0.01). However, there were no differences among groups D, E, and F (P > 0.05). Moreover, there were significant differences among groups I (1% LOX + 1% GNP, 4 h), J (1% LOX + 1% GNP, 8 h), and K (1% LOX + 1% GNP, 12 h) (P < 0.05). There was a significant difference in the mean elastic modulus between group L (1% GNP) and groups F (1% LOX) and I (1% LOX + 1% GNP) (P < 0.01), but there was no difference between group F and group I (P = 0.412).
LOX had a crosslinking effect on the sclera of normal as well as on myopic eyes. The effect of crosslinking of LOX was weaker than that of GNP, and no catalytic crosslinking effect of LOX was shown with GNP in the present study.

References

    1.  Yang, Y., Li, X., Yan, N., Cai, S., and Liu, X. Myopia: a collagen disease? Med. Hypoth., 2009, 73, 485–487.>
https://doi.org/10.1016/j.mehy.2009.06.020

    2.  Wollensak, G. and Spoerl, E. Collagen crosslinking of human and porcine sclera. J. Cataract Refract. Surg., 2004, 30, 689–695.
https://doi.org/10.1016/j.jcrs.2003.11.032

    3.  McBrien, N. A. and Gentle, A. Role of the sclera in the development and pathological complications of myopia. Prog. Retin. Eye Res., 2003, 22, 307–338.
https://doi.org/10.1016/S1350-9462(02)00063-0

    4.  Avila, M. Y., Gerena, V. A., and Navia, J. L. Corneal crosslinking with genipin, comparison with UV-riboflavin in ex-vivo model. Mol. Vis., 2012, 18, 1068–1073.

    5.  Sergienko, N. M. and Shargorogska, I. The scleral rigidity of eyes with different refractions. Graefe's Arch. Clin. Exp. Ophthalmol., 2012, 250, 1009–1012.
https://doi.org/10.1007/s00417-012-1973-0

    6.  Campbell, I. C., Hannon, B. G., Read, A. T., Sherwood, J. M., Schwaner, S. A., and Ethier, C. R. Quantification of the efficacy of collagen cross-linking agents to induce stiffening of rat sclera. J. R. Soc. Interface, 2017, 14, 20170014.
https://doi.org/10.1098/rsif.2017.0312
https://doi.org/10.1098/rsif.2017.0014

    7.  Rong, S., Wang, C., Han, B., Feng, P., Lan, W., Gao, Z., et al. Iontophoresis-assisted accelerated riboflavin/ ultraviolet A scleral cross-linking: a potential treat­ment for pathologic myopia. Exp. Eye Res., 2017, 162, 37–47.
https://doi.org/10.1016/j.exer.2017.07.002

    8.  Li, X., Wu, M., Zhang, L., Liu, H., Zhang, L., and He, J. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model. Exp. Eye Res., 2017, 165, 1–6.
https://doi.org/10.1016/j.exer.2017.08.019

    9.  Olczyk, P., Kuznik-Trocha, K., Olczyk, K., Kozma, E. M., Glowacki, A., Wisowski, G., et al. [Methods of collagenous tissue fixation in the preparation of bioprostheses]. Postepy Hig. Med. Dosw., 2003, 57, 555–577 (in Polish).

 10.  Simmons, D. M. and Kearney, J. N. Evaluation of collagen cross-linking techniques for the stabilization of tissue matrices. Biotechnol. Appl. Biochem., 1993, 17(Pt 1), 23–29.

 11.  Sung, H. W., Huang, R. N., Huang, L. L., and Tsai, C. C. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J. Biomater. Sci. Polym. Ed., 1999, 10, 63–78.
https://doi.org/10.1163/156856299X00289

 12.  Liu, T. X., Wu, J. S., Gu, Y. W., Yang, B., and Wang, Z. Change of biomechanical properties in porcine sclera treated with genipin. Chin. J. Ophthalmol. Vis. Sci., 2014, 16, 274–278.

 13.  Sung, H. W., Liang, I. L., Chen, C. N., Huang, R. N., and Liang, H. F. Stability of a biological tissue fixed with a naturally occurring crosslinking agent (genipin). J. Biomed. Mater. Res., 2001, 55, 538–546.
https://doi.org/10.1002/1097-4636(20010615)55:4<538::AID-JBM1047>3.0.CO;2-2

 14.  Liu, T. X., Wu, J. S., Gu, Y. W., Yang, B., and Wang, Z. Change of biomechanical properties in porcine sclera treated with genipin. Chin. J. Optom. Ophthalmol. Vis. Sci., 2014, 16(5), 274–278.

 15.  Martins, R. P., Ujfalusi, A. A., Csiszar, K., and Krawetz, S. A. Characterization of the region encompassing the human lysyl oxidase locus. DNA Seq., 2001, 12, 215–227.
https://doi.org/10.3109/10425170109024996

 16.  Hadidi, P., Cissell, D. D., Hu, J. C., and Athanasiou, K. A. Temporal development of near-native functional properties and correlations with qMRI in self-assembling fibrocartilage treated with exogenous lysyl oxidase homolog 2. Acta Biomater., 2017, 64, 29–40.
https://doi.org/10.1016/j.actbio.2017.09.035

 17.  Sato, F., Seino-Sudo, R., Okada, M., Sakai, H., Yumoto, T., and Wachi, H. Lysyl oxidase enhances the deposition of tropoelastin through the catalysis of tropoelastin molecules on the cell surface. Biol. Pharm. Bull., 2017, 40, 1646–1653.
https://doi.org/10.1248/bpb.b17-00027

 18.  Wang, F., Wan, J., Li, Q., Zhang, M., Wan, Q., Ji, C., et al. Lysyl oxidase is involved in synovial hyperplasia and angiogenesis in rats with collagen-induced arthritis. Mol. Med. Rep., 2017, 16, 6736–6742.
https://doi.org/10.3892/mmr.2017.7436

 19.  Liu, X., Zhao, Y., Gao, J., Pawlyk, B., Starcher, B., Spencer, J. A., et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat. Genet., 2004, 36, 178–182.
https://doi.org/10.1038/ng1297

 20.  Erler, J. T., Bennewith, K. L., Nicolau, M., Dornhofer, N., Kong, C., Le, Q. T., et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature, 2006, 440, 1222–1226.
https://doi.org/10.1038/nature04695

 21.  Yang, X., Li, S., Li, W., Chen, J., Xiao, X., Wang, Y., et al. Inactivation of lysyl oxidase by beta-amino­propionitrile inhibits hypoxia-induced invasion and migration of cervical cancer cells. Oncol. Rep., 2013, 29, 541–548.
https://doi.org/10.3892/or.2012.2146

 22.  Yang, S. L., Li, W. T., Chen, Y., Xu, Q. L., Lin, L. X., Liao, Y.R., et al. The influence of minus lens-induced defocus on emmetropization in guinea pigs without accommodation. Chin. J. Optom. Ophthalmol. Vis. Sci., 2014, 6, 335–338.

 23.  Yan, L. P., Wang, Y. J., Ren, L., Wu, G., Caridade, S. G., Fan, J. B., et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J. Biomed. Mater. Res. A, 2010, 95, 465–475.
https://doi.org/10.1002/jbm.a.32869

 24.  Lu, M. C., Hsiang, S. W., Lai, T. Y., Yao, C. H., Lin, L. Y., and Chen, Y. S. Influence of cross-linking degree of a biodegradable genipin-cross-linked gelatin guide on peripheral nerve regeneration. J. Biomater. Sci. Polym. Ed., 2007, 18, 843–863.
https://doi.org/10.1163/156856207781367747

 25.  Sundararaghavan, H. G., Monteiro, G. A., Lapin, N. A., Chabal, Y. J., Miksan, J. R., and Shreiber, D. I. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence. J. Biomed. Mater. Res. A, 2008, 87, 308–320.
https://doi.org/10.1002/jbm.a.31715

 26.  Wang, C., Lau, T. T., Loh, W. L., Su, K., and Wang, D. A. Cytocompatibility study of a natural biomaterial cross­linker – genipin with therapeutic model cells. J. Biomed. Mater. Res. B Appl. Biomater., 2011, 97, 58–65.
https://doi.org/10.1002/jbm.b.31786

Back to Issue