Selective Laser Melting (SLM) allows obtaining light-weight cellular lattice structures with complex geometry. However, producing metal–ceramic components, as well as cellular lattice structures, by SLM is limited. The present study focuses on obtaining metal–ceramic lattice structures by a two-step approach: SLM and post-processing. Nitriding and carburizing were applied to stainless steel cellular lattice structures. A set of post-processing parameters is estimated in order to nitridize and carburize metallic cellular lattice structures. Compared to the initial material, post-processed lattices exhibited higher average Vickers hardness values, measured for nitrided and carburized structures at 605 and 576 HV0.3, respectively, while the reference microhardness of steel 316L is 210 HV0.3. The highest average compressive yield strength value for untreated lattice was 60.7 MPa and for carburized lattices, 99.3 MPa.
1. Yan, C., Hao, L., Hussein, A., and Raymont, D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tool. Manu., 2012, 62, 32–38.
https://doi.org/10.1016/j.ijmachtools.2012.06.002
2. Yang, L. Experimental-assisted design development for a 3D reticulate octahedral cellular structure using additive manufacturing. Rapid Prototyping J., 2015, 21(2), 168–176.
https://doi.org/10.1108/RPJ-12-2014-0178
3. Shishkovsky, I., Yadroitsev, I., Bertrand, Ph., and Smurov, I. Alumina-zirconium ceramics synthesis by selective laser sintering/melting. Appl. Surf. Sci., 2007, 254, 966–970.
https://doi.org/10.1016/j.apsusc.2007.09.001
4. Davydova, A., Domashenkov, A., Sova, A., Movtchan, I., Bertrand, P., Desplanques, B., et al. Selective laser melting of boron carbide particles coated by a cobalt-based metal layer. J. Mater. Process. Technol., 2016, 229, 361–366.
https://doi.org/10.1016/j.jmatprotec.2015.09.033
5. Shahzad, K., Deckers, J., Zhang, Z., Kruth, J. P., and Vleugels, J. Additive manufacturing of zirconia parts by indirect selective laser sintering. J. Eur. Ceram. Soc., 2014, 34, 81–89.
https://doi.org/10.1016/j.jeurceramsoc.2013.07.023
6. Leu, M. C., Pattnaik, S., and Hilmas, G. E. Investigation of laser sintering for freeform fabrication of zirconium diboride parts. Virtual Phys. Prototyp., 2012, 7, 25–36.
https://doi.org/10.1080/17452759.2012.666119
7. Riedel, R., Mera, G., Hauser, R., and Klonczynsky, A. Silicon-based polymer-derived ceramics: synthesis properties and applications – a review. J. Ceram. Soc. Jpn., 2006, 114, 425–444.
https://doi.org/10.2109/jcersj.114.425
8. Eckel, Z. C., Zhou, C., Martin, J. H., Jacobsen, A. J., Carter, W. B., and Schaedler, T. A. Additive manufacturing of polymer-derived ceramics. Science, 2016, 351, 58–62.
https://doi.org/10.1126/science.aad2688
9. Barrallier, L. Classical nitriding of heat treatable steel. In Thermochemical Surface Engineering of Steels (Mittemeijer, E. J. and Somers, M. A. J., eds). Woodhead Publishing, 2015, 392–411.
https://doi.org/10.1533/9780857096524.3.393
10. Van Wiggen, P. C., Rozendaal, H. C. F., and Mittemeijer, E. J. The nitriding behaviour of iron-chromium-carbon alloys. J. Mater. Sci., 1985, 20, 4561–4582.
https://doi.org/10.1007/BF00559347
11. Edenhofer, B., Joritz, D., Rink, M., and Voges, K. Carburizing of steels. In Thermochemical Surface Engineering of steels (Mittemeijer, E. J and Somers, M. A. J., eds). Woodhead Publishing, 2015, 485–554.
https://doi.org/10.1533/9780857096524.3.485
12. Suard, M., Martin, G., Lhuissier, P., Dendievel, R., Vignat, F., Blandin, J. J., and Villeneuve, F. Mechanical equivalent diameter of single struts for the stiffness prediction of lattice structures produced by Electron Beam Melting. Addit. Manuf., 2015, 8, 124–131.
https://doi.org/10.1016/j.addma.2015.10.002
13. Yan, C., Hao, L., Hussein, A., Bubb, S. L., Young, P., and Raymont, D. Evaluation of light-weight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering. J. Mater. Process. Technol., 2014, 214, 856–864.
https://doi.org/10.1016/j.jmatprotec.2013.12.004
14. Wauthle, R., Vrancken, B., Beynaerts, B., Jorissen, K., Schrooten, J., Kruth, J. P., and Van Humbeeck, J. Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit. Manuf., 2015, 5, 77–84.
https://doi.org/10.1016/j.addma.2014.12.008
15. Gibson, L. J. and Ashby, M. F. The mechanics of three-dimensional cellular materials. Proc. R. Soc. A Math. Phys. Eng. Sci., 1982, 382, 43–59.
https://doi.org/10.1098/rspa.1982.0088
16. Pye, D. Practical Nitriding and Ferritic Nitrocarburizing. ASM International, Materials Park, Ohio, 2003.
17. Parrish, G. Carburizing: Microstructures and Properties. ASM International, Materials Park, Ohio, 1999.
18. Hussainova, I., Ivanov, R., Stamatin, S. N., Anoshkin, I. V., Skou, E. M., and Nasibulin, A. G. A few-layered graphene on alumina nanofibers for electrochemical energy conversion. Carbon, 2015, 88, 157–164.
https://doi.org/10.1016/j.carbon.2015.03.004
19. Drozdova, M., Hussainova, I., Pérez-Coll, D., Aghayan, M., Ivanov, R., and Rodríguez, M. A. A novel approach to electroconductive ceramics filled by graphene covered nanofibers. Mater. Des., 2016, 90, 291–298.
https://doi.org/10.1016/j.matdes.2015.10.148
20. Liu, Y., Yang, Y., Mai, S., Wang, D., and Song, C. Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Mater. Des., 2015, 87, 797–806.
https://doi.org/10.1016/j.matdes.2015.08.086
21. Wierzba, B. Competition between Kirkendall and Frenkel effects during multicomponent interdiffusion process. Phys. A Stat. Mech. Appl., 2014, 403, 29–34.
https://doi.org/10.1016/j.physa.2014.02.014
22. Rothman, S. J., Nowicki, L. J., and Murch, G. E. Self-diffusion in austenitic Fe-Cr-Ni alloys. J. Phys. F Met. Phys., 1980, 10, 383–398.
https://doi.org/10.1088/0305-4608/10/3/009
23. Tolosa, I., Garciandía, F., Zubiri, F., Zapirain, F, and Esnaola, A. Study of mechanical properties of AISI 316 stainless steel processed by “selective laser melting”, following different manufacturing strategies. Int. J. Adv. Manuf. Technol., 2010, 51, 639–647.
https://doi.org/10.1007/s00170-010-2631-5
24. Chang, C-N. and Chen, F-S. Wear resistance evaluation of plasma nitrocarburized AISI 316L stainless steel. Mater. Chem. Phys., 2003, 82, 281–287.
https://doi.org/10.1016/S0254-0584(03)00234-7
25. Muthukumaran, V., Selladurai, V., Nandhakumar, S., and Senthilkumar, M. Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel. Mater. Des., 2010, 31, 2813–2817.
https://doi.org/10.1016/j.matdes.2010.01.007
26. Holovenko, Y., Antonov, M., Kollo, L., and Hussainova, I. Friction studies of metal surfaces with various 3D printed patterns tested in dry sliding conditions. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., 2018, 232, 43–53.
https://doi.org/10.1177/1350650117738920
27. Auriemma, F. Study of a new highly absorptive acoustic element. Acoust. Aust., 2017, 45, 411–419.
https://doi.org/10.1007/s40857-017-0087-6
28. Swift, G. W. and Keolian, R. M. Thermoacoustics in pin‐array stacks. J. Acoust. Soc. Am., 1993, 94, 941–943.
https://doi.org/10.1121/1.408196
29. Avent, A. W. and Bowen, C. R. Principles of thermoacoustic energy harvesting. Eur. Phys. J. Spec. Top., 2015, 224, 2967–2992.
https://doi.org/10.1140/epjst/e2015-02601-x