ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Energy harvesting based two-way full-duplex relaying network over a Rician fading environment: performance analysis; pp. 111–123
PDF | https://doi.org/10.3176/proc.2019.1.11

Authors
Tan N. Nguyen, Minh Tran, Duy-Hung Ha, Thanh-Long Nguyen, Miroslav Voznak
Abstract

Full-duplex transmission is a promising technique to enhance the capacity of communication systems. In this paper, we propose and investigate the system performance of an energy harvesting based two-way full-duplex relaying network over a Rician fading environment. Firstly, we analyse and demonstrate the analytical expressions of the achievable throughput, outage probability, optimal time switching factor, and symbol error ratio of the proposed system. In the second step, the effect of various parameters of the system on its performance is presented and investigated. In the final step, the analytical results are also demonstrated by Monte Carlo simulation. The numerical results proved that the analytical results and the simulation results agreed with each other.

References

    1.  Bi, S., Ho, C. K., and Zhang, R. Wireless powered communication: opportunities and challenges. IEEE Commun. Mag., 2015, 53(4), 117–125.
https://doi.org/10.1109/MCOM.2015.7081084

    2.  Niyato, D., Kim, D. I., Maso, M., and Han, Z. Wireless powered communication networks: research directions and technological approaches. IEEE Wireless Commun., 2017, 24(6), 2–11.
https://doi.org/10.1109/MWC.2017.1600116

    3.  Yu, H., Lee, H., and Jeon, H. What is 5G? Emerging 5G mobile services and network requirements. Sustainability, 2017, 9, 1848.
https://doi.org/10.3390/su9101848

    4.  Duarte, M., Dick, C., and Sabharwal, A. Experiment-driven characterization of full-duplex wireless systems. IEEE Trans. Wireless Commun., 2012, 12, 4296–4307.
https://doi.org/10.1109/TWC.2012.102612.111278

    5.  Lee, W. C. Y. The most spectrum-efficient duplexing system: CDD. IEEE Commun. Mag., 2012, 40, 163–166.
https://doi.org/10.1109/35.989781

    6.  Wang, C-X., Haider, F., Gao, X., You, X-H., Yang, Y., Yuan, D., et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun. Mag., 2014, 52, 122–130.
https://doi.org/10.1109/MCOM.2014.6736752

    7.  Ju, H., Oh, E., and Hong, D. Catching resource-devouring worms in next-generation wireless relay systems: two-way relay and full-duplex relay. IEEE Commun. Mag., 2009, 47, 58–65.
https://doi.org/10.1109/MCOM.2009.5277456

    8.  Riihonen, T., Werner, S., Wichman, R., and Hämäläinen, J. Outage probabilities in infrastructure-based single-frequency relay links. In Proceedings of IEEE Wireless Communications and Networking Conference. IEEE, 2009.
https://doi.org/10.1109/WCNC.2009.4917875

    9.  Ng, D. W. K., Lo, E. S., and Schober, R. Dynamic resource allocation in MIMO-OFDMA systems with full duplex and hybrid relaying. IEEE Trans. Commun., 2012, 60, 1291–1304.
https://doi.org/10.1109/TCOMM.2012.031712.110233

 10.  Krikidis, I., Suraweera, H. A., Smith, P. J., and Yuen, C. Full-duplex relay selection for amplify-and-forward cooperative networks. IEEE Trans. Wireless Commun., 2012, 11, 4381–4393.
https://doi.org/10.1109/TWC.2012.101912.111944

 11.  Valenta, C. R. and Durgin, G. D. Harvesting wireless power: survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microwave Mag., 2014, 15(4), 108–120.
https://doi.org/10.1109/MMM.2014.2309499

 12.  Louie, R., Li, Y., and Vucetic, B. Practical physical layer network coding for two-way relay channels: performance analysis and comparison. IEEE Trans. Wireless Commun., 2010, 9, 764–777.
https://doi.org/10.1109/TWC.2010.02.090314

 13.  Riihonen, T., Werner, S., and Wichman, R. Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Trans. Wireless Commun., 2011, 10, 3074–3085.
https://doi.org/10.1109/TWC.2011.071411.102266

 14.  Duong, T. Q., Duy, T. T., Matthaiou, M., Tsiftsis, T., and Karagiannidis, G. K. Cognitive cooperative networks in dual-hop asymmetric fading channels. In IEEE Global Communications Conference (GLOBECOM). Conference paper, 2013.
https://doi.org/10.1109/GLOCOM.2013.6831197

 15.  Chong, E. K. and Żak, S. H. An Introduction to Optimization. John Wiley & Sons, 2013.

 16.  Nguyen, T. N., Minh, T. H. Q., Tran, P. T., and Voznak, M. Energy harvesting over Rician fading channel: a performance analysis for half-duplex bidirectional sensor networks under hardware impairments. Sensors, 2018, 18(6), 1781.
https://doi.org/10.3390/s18061781

 17.  Nguyen, T. N., Minh, T. H. Q., Tran, P. T., and Voznak, M. Adaptive energy harvesting relaying protocol for two-way half duplex system network over Rician fading channel. Wireless Commun. Mobile Comput., 2018, Article ID 7693016.

 18.  Suraweera, H., Karagiannidis, G., and Smith, P. Performance analysis of the dual-hop asymmetric fading channel. IEEE Trans. Wireless Commun., 2009, 8, 2783–2788.
https://doi.org/10.1109/TWC.2009.080420

 19.  Zwillinger, D. (ed.). Table of Integrals, Series, and Products. Elsevier, 2015.

 20.  Bhatnagar, M. R. On the capacity of decode-and-forward relaying over Rician fading channels. IEEE Commun. Lett., 2013, 17, 1100–1103.
https://doi.org/10.1109/LCOMM.2013.050313.122813

 21.  Nguyen, T. N., Minh, T. H. Q., Tran, P. T., Voznak, M., Duy, T. T., Nguyen, T-L., and Tin, P. T. Performance enhancement for energy harvesting based two-way relay protocols in wireless ad-hoc networks with partial and full relay selection methods. Ad Hoc Networks, 84, 178–187.
https://doi.org/10.1016/j.adhoc.2018.10.005

Back to Issue