ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Ocean acidification research in Estonia: challenges and opportunities; pp. 22–31
PDF | https://doi.org/10.3176/proc.2019.1.05

Authors
Liina Pajusalu, Sam Dupont, Silvie Lainela, Georg Martin
Abstract

Anthropogenic carbon dioxide (CO2) emissions to the atmosphere are causing a decrease in the average surface global ocean pH, also known as ocean acidification. Our understanding of the global impacts of ocean acidification on marine ecosystems is growing rapidly. In the Baltic Sea area, however, the vast majority of studies have so far focused on the effects of eutrophication on marine ecosystems. Less is known about the changing carbon chemistry due to increasing CO2 concentrations in seawater, which could influence Baltic Sea marine ecosystems. The present study focuses on Estonian waters, located in the northeastern part of the Baltic Sea. The aim of this article is to summarize the existing knowledge on ocean acidification research in Estonia as well as to highlight the opportunities and challenges for future research. One key challenge is that the present national marine monitoring of carbonate chemistry in Estonia is not following best practices. The lack of proper seawater carbonate chemistry data in the study area is strongly limiting the ability to design relevant biological experiments and forecast future changes. So far, the effect of ocean acidification on marine biota in the Estonian coastal waters is mostly unexplored. However, several sensors for measurements of carbonate chemistry variables as well as laboratory facilities for conducting ocean acidification experiments are now available.

References

Al-Janabi, B., Kruse, I., Graiff, A., Karsten, U., and Wahl, M. 2016a. Genotypic variation influences tolerance to warming and acidification of early life-stage Fucus vesiculosus L. (Phaeophyceae) in a seasonally fluctuating environment. Mar. Biol., 163, 1–15.
https://doi.org/10.1007/s00227-015-2804-8

Al-Janabi, B., Kruse, I., Graiff, A., Winde, V., Lenz, M., and Wahl, M. 2016b. Buffering and amplifying interactions among OAW (Ocean Acidification & Warming) and nutrient enrichment on early life-stage Fucus vesiculosus L. (Phaeophyceae) and their carry over effects to hypoxia impact. PLoS ONE, 11, e0152948.
https://doi.org/10.1371/journal.pone.0152948

Almen, A-K., Glippa, O., Pettersson, H., Alenius, P., and Engström-Öst, J. 2017. Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers. Environ. Monit. Assess., 189, 1–147.
https://doi.org/10.1007/s10661-017-5840-7

Andersson, P., Håkansson, B., Håkansson, J., Sahlsten, E., Havenhand, J., Thorndyke, M., et al. 2008. Marine Acidification. On Effects and Monitoring of Marine Acidification in the Seas Surrounding Sweden. SMHI Oceanografi, No. 92. Gothenburg, Sweden.

Boyd, P., Collins, S., Dupont, S., Fabricius, K., Gattuso, J. P., Havenhand, J., et al. 2018. Experimental strategies to assess the biological ramifications of multiple drivers of ocean global changes – a review. Global Change Biol., 24, 2239–2261.
https://doi.org/10.1111/gcb.14102

Brutemark, A., Engström-Öst, J., and Vehmaa, A. 2011. Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanol. Hydrobiol. St., 40, 91–94.
https://doi.org/10.2478/s13545-011-0034-3

Cai, W. J., Hu, X., Huang, W. J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., et al. 2011. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci., 4, 766–770.
https://doi.org/10.1038/ngeo1297

Caldeira, K. and Wickett, M. E. 2003. Oceanography: anthro­pogenic carbon and ocean pH. Nature, 425, 365.
https://doi.org/10.1038/425365a

Cornwall, C. E., Hepburn, C. D., McGraw, C. M., Currie, K. I., Pilditch, C. A., Hunter, K. A., et al. 2013. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. R. Soc. Lond., B280, 20132201.
https://doi.org/10.1098/rspb.2013.2201

Dickson, A. G. 2010. Standards for ocean measurements. Oceanography, 23(3), 34–47.
https://doi.org/10.5670/oceanog.2010.22

Dickson, A. G., Sabine, C. L., and Christian, J. R. (eds). 2007. Guide to Best Practices for Ocean CO2 Measurements. PICES Special Publication, No. 8.

Doney, S. C., Mahowald, N., Lima, I., Feely, R. A., Mackenzie, F. T., Lamarque, J. F., et al. 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Natl. Acad. Sci., 104, 14580–14585.
https://doi.org/10.1073/pnas.0702218104

Dupont, S. and Fauville, G. 2017. Ocean literacy as a key toward sustainable development and ocean governance. In Handbook on the Economics and Management of Sustainable Oceans (Nunes, P. A. et al., eds), pp. 519–537. Edward Elgar Publishing, Cheltenham, UK and Northampton, MA, USA.
https://doi.org/10.4337/9781786430724.00037

Dupont, S., Havenhand, J., Thorndyke, W., Peck, L., and Thorndyke, M. 2008. Near-future level of CO₂-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser., 373, 285294.

EC. 2000. Directive 200/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ, L327.

EC. 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a frame­work for community action in the field of marine environ­mental policy (Marine Strategy Framework Directive). OJ, L164.

EEC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. OJ, L206.

Eklöf, J. S, Alsterberg, C., Havenhand, J. N., Sundbäck, K., Wood, H. L., and Gamfeldt, L. 2012. Experimental climate change weakens the insurance effect of biodiversity. Ecol. Lett., 15, 864–872.
https://doi.org/10.1111/j.1461-0248.2012.01810.x

Feistel, R., Nausch, G., and Wasmund, N. 2008. State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. John Wiley and Sons, Hoboken, New Jersey.
https://doi.org/10.1002/9780470283134

Graiff, A., Bartsch, I., Ruth, W., Wahl, M., and Karsten, U. 2015. Season exerts differential effects of ocean acidification and warming on growth and carbon metabolism of the seaweed Fucus vesiculosus in the western Baltic Sea. Front. Mar. Sci., 2, 112.
https://doi.org/10.3389/fmars.2015.00112

HELCOM COMBINE. 2017. Manual for Marine Monitoring in the COMBINE Programme of HELCOM.

Howarth, R., Chan, F., Conley, D. J., Garnier, J., Doney, S. C., Marino, R., et al. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ., 9, 18–26.
https://doi.org/10.1890/100008

[IPCC] Intergovernmental Panel on Climate Change. 2014. Climate change 2014: synthesis report. In Contribution
of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(Core Writing Team, Pachauri, R. K. and Meyer, L. A., eds). IPCC, Geneva, Switzerland.

[ISO] International Organization for Standardization. 2008. ISO 10523:2008. Water quality – Determination of pH. https://www.iso.org/standard/51994.html (accessed 2018-10-09).

Kikas, V., Norit, N., Meerits, A., Kuvaldina, N., Lips, I., and Lips, U. 2010. High-resolution monitoring of environ­mental state variables in the surface layer of the Gulf of Finland (during a dynamic spring bloom in March–May 2010). In 4th IEEE/OES Baltic Symposium, Riga, 24-27 August 2010. IEEE.

Kotta, J., Lauringson, V., Martin, G., Simm, M., Kotta, I., Herkül, K., et al. 2008. Gulf of Riga and Pärnu Bay. In Ecology of Baltic Coastal Waters (Schiewer, U., ed.), pp. 217–243. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-540-73524-3_10

Law, C. S., Bell, J. J., Bostock, H. C., Cornwall, C. E., Cummings, V. J., Currie, K., et al. 2017. Ocean acidification in New Zealand waters: trends and impacts. New Zeal. J. Mar. Fresh. Res., 52, 1–41.

Lindberg, A. E. B. 2016. Hydrography and Oxygen in Deep Basins. HELCOM Baltic Sea Environment Fact Sheets. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/ (accessed 2018-04-15).

Meier, H. E. M. 2015. Projected change – marine physics. In Second Assessment of Climate Change for the Baltic Sea Basin (The BACC II Author Team., ed.), pp. 243–252. Springer International Publishing, Switzerland.

Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., et al. 2013. Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar. Biol., 160, 1875–1888.
https://doi.org/10.1007/s00227-012-1954-1

Middleboe, A. L. and Hansen, P. J. 2007. High pH in shallow water macroalgal habitats. Mar. Ecol. Prog. Ser., 338, 107–117.
https://doi.org/10.3354/meps338107

Müller, J. D., Schneider, B., and Rehder, G. 2016. Long-term alkalinity trends in the Baltic Sea and their implications for CO2-induced acidification. Limnol. Oceanogr., 61, 1984–2002.
https://doi.org/10.1002/lno.10349

Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J. 2015. Global Ocean Acidification Observing Network: Requirements and Governance Plan. Second Edition. GOA-ON. http://www.goa-on.org/docs/GOA-ON_plan_print.pdf (accessed 2018-10-09).

Omstedt, A., Edman, M., Claremar, B., Frodin, P., Gustafsson, E., Humborg, C., et al. 2012. Future changes in the Baltic Sea acid–base (pH) and oxygen balances. Tellus B, 64, 1–23.
https://doi.org/10.3402/tellusb.v64i0.19586

Paalme, T., Martin, G., Kotta, J., Kukk, H., and Kaljurand, K. 2004. Distribution and dynamics of drifting macroalgal mats in Estonian coastal waters during. Proc. Estonian Acad. Sci. Biol. Ecol., 53, 260–268.

Pajusalu, L. 2016. The Effect of CO2 Enrichment on Net Photosynthesis of Macrophytes in a Brackish Water Environ­ment. PhD Thesis. Dissertationes Biologicae Universitatis Tartuensis, 307. University of Tartu Press.

Pajusalu, L., Martin, G., Põllumäe, A., and Paalme, T. 2013. Results of laboratory and field experiments of the direct effect of increasing CO2 on net primary production of macroalgal species in brackish-water ecosystems. Proc. Estonian Acad. Sci., 62, 148–154.
https://doi.org/10.3176/proc.2013.2.09

Pajusalu, L., Martin, G., Põllumäe, A., Torn, K., and Paalme, T. 2015. Direct effects of increased CO2 concentrations in seawater on the net primary production of charophytes in a shallow, coastal, brackish-water ecosystem. Boreal Env. Res., 20, 413–422.

Pajusalu, L., Martin, G., Paalme, T., and Põllumäe, A. 2016a. The effect of CO2 enrichment on net photosynthesis of the red alga Furcellaria lumbricalis in a brackish water environment. PeerJ., 4(e2505), 1–21.

Pajusalu, L., Martin, G., Põllumäe, A., and Paalme, T. 2016b. The influence of CO2 enrichment on net photosynthesis of seagrass Zostera marina in a brackish water environment. Front. Mar. Sci., 3, 1–10.

Peterson, A. and Herkül, K. 2017. Mapping benthic biodiversity using georeferenced environmental data and predictive modeling. Mar. Biodiv. https://doi.org/10.1007/s12526-017-0765-5  (accessed 2018-10-09).
https://doi.org/10.1007/s12526-017-0765-5

Pyhälä, M., Fleming-Lehtinen, V., Lysiak-Pastuszak, E., Carstens, M., Leppänen, J-M., Murray, C., et al. 2014. Eutrophication status of the Baltic Sea 2007–2011. A concise thematic assessment. Technical report. Baltic Sea Environmental Proceedings, No. 143. HELCOM, Helsinki.

Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., et al. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05. The Royal Society, London.

Riebesell, U., Fabry, V. J., Hansson, L., and Gattuso, J. P. 2011. Guide to Best Practices for Ocean Acidification Research and Data Reporting. Office for Official Publications of the European Communities.

Saderne, V., Fietzek, P., and Herman, P. M. J. 2013. Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE, 8, e62689.
https://doi.org/10.1371/journal.pone.0062689

Schneider, B., Gülzow, W., Sadkowiak, B., and Rehder, G. 2014. Detecting sinks and sources of CO2 and CH4 by ferrybox-based measurements in the Baltic Sea: three case studies. J. Mar. Syst., 140, 13–25.
https://doi.org/10.1016/j.jmarsys.2014.03.014

Schneider, B., Eilola, K., Lukkari, K., Muller-Karulis, B., and Neumann, T. 2015. Environmental impacts – marine biogeochemistry. In Second Assessment of Climate Change for the Baltic Sea Basin (The BACC II Author Team., ed.), pp. 337–361. Springer International Publishing, Switzerland.

SEI. 2012. Eesti mereala keskkonnaseisundi esialgse hinda­mise sotsiaal-majanduslik analüüs. Aruanne EL mere­strateegia raamdirektiivi artikkel 8-st tulenevate riiklike kohustuste täitmiseks. [Economic and Social Analysis for the Initial Assessment for the Environmental Status of the Estonian Marine Area. Report on the fulfilment of obligations set by Article 8 of the EU Marine Strategy Framework Directive.] Aruanne 95. Tallinn (in Estonian). https://www.environ.ee/sites/default/files/esa­aruanne.pdf (accessed 2018-10-22).

Soomere, T., Myrberg, K., Lepparanta, M., and Nekrasov, A. 2008. The progress in knowledge of physical oceano­graphy of the Gulf of Finland: e review for 1997–2007. Oceanologia, 50, 287–362.

Ulfsbo, A., Hulth, S., and Anderson, L. G. 2011. pH and biogeochemical processes in the Gotland Basin of the Baltic Sea. Mar. Chem., 127, 20–30.
https://doi.org/10.1016/j.marchem.2011.07.004

Vargas, C. A., Lagos, N. A., Lardies, M. A., Duarte, C., Manríguez, P. H., Aguilera, C., et al. 2017. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol., 1(0084).

Visbeck, M. 2018. Ocean science research is key for a sustainable future. Nat. Commun., 9(690), 1–4.
https://doi.org/10.1038/s41467-018-03158-3

Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C., and Gobler, C. J. 2014. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci., 148, 1–13.
https://doi.org/10.1016/j.ecss.2014.05.027

Wedborg, M., Turner, D. R., Anderson, L. G., and Dyrssen, D. 2007. Determination of pH. In Methods of Seawater Analysis (Grasshoff, K. et al., eds), pp. 109–125. John Wiley & Sons.

Wittmann, A. C. and Pörtner, H-O. 2013. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Change, 3, 995–1001.
https://doi.org/10.1038/nclimate1982

 

Back to Issue