The local Friedmann–Einstein equation of general relativity for model universes is generalized, in the spirit of Mach’s principle, to an integro-differential equation by introducing the gravitational potential of the universe. This equation is thereafter integrated, and a useful differential equation is obtained, which in the flat space can equivalently be treated by special relativity. An important formula is proposed, which demonstrates that the light speed squared, c2, is equal to the gravitational potential. In this model universe the critical density of matter turns out to be three times smaller than traditionally obtained, thus removing the necessity of dark energy. The evolutionary scenario of the flat-space universe replaces the concept of the traditional Big Bang universe by a steady Milne-type everlasting mass-generating universe. In it not only the initial state of the universe, but also its evolutionary scenario is determined by four fundamental constants of physics, which specify also the light speed as the dilution rate and the constant Planckian mass generation rate, Ṁ = c3/6G. The observed value of the inverse Hubble parameter is the current age of the universe to the observer. Moreover, due to the constancy of the gravitational potential, the model avoids primordial inflationary expansion of the universe and anthropocentrism of the present epoch in its evolutionary scenario. Simple formulae are derived, which demonstrate that the primordial nucleogenesis of light atoms and the formation of the cosmic microwawe background occur at an almost identical temporal run of temperature and density for any reasonable value of the state parameter n of the model universe studied. The evolutionary differences can appear for a LCDM model universe only at redshift values less than one.
W. 1952. A revision of extra-galactic distance scale. Trans. IAU, 8, 397–398.
Chodorowski, M. J. 2005. Cosmology under Milne’s shadow. ArXiv: astro-ph/0503690v2, 1–5.
Einstein, A. 1916a. Die Grundlage der allgemeinen Relativit¨atstheorie. Annalen der Physik (Ser. 4), 49, 769–822.
Einstein, A. 1916b. Ernst Mach. Phys. Z., 17, 101–104.
Friedmann, A. 1922. U¨ ber die Kru¨mmung des Raumes. Z. Phys., 10, 377–386.
https://doi.org/10.1007/BF01332580
Friedmann, A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Kru¨mmung des Raumes. Z. Phys., 21, 326–332.
https://doi.org/10.1007/BF01328280
Guth, A. H. 1980. Inflationary universe: a possible solution to the horizon and flatness problem. Phys. Rev. D, 23, 347–356.
https://doi.org/10.1103/PhysRevD.23.347
Hoyle, F. 1948. A new model for the expanding universe. MNRAS, 108, 372–382.
https://doi.org/10.1093/mnras/108.5.372
Hoyle, F. 1949. On the cosmological problem. MNRAS, 109, 365–371.
https://doi.org/10.1093/mnras/109.3.365
Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. P. Natl. Acad. Sci. USA, 15(3), 168–173.
https://doi.org/10.1073/pnas.15.3.168
Lemaître, G. 1927. Un univers homog`ene de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extra-galactiques. Ann. Soc. Sci. Bruxelles, 47A, 49–59.
Lemaître, G. 1931. The beginning of the world from the point of view of quantum theory. Nature, 127, 706.
https://doi.org/10.1038/127706b0
Lewis, G. F., Barnes, L. A., and Kaushik, R. 2016. Primordial nucleosynthesis in the Rh = ct cosmology: pouring cold water on the simmering Universe. MNRAS, 460, 291–296.
https://doi.org/10.1093/mnras/stw1003
Linde, A. D. 1982. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy, and primordial monopole problems. Phys. Lett., 108 B, 389–393.
https://doi.org/10.1016/0370-2693(82)91219-9
Melia, F. 2012. Fitting the Union2.1 supernova sample with the Rh = ct universe. Astron. J., 144, A110, 1–7.
Melia, F. 2013. The Rh = ct universe without inflation. Astron. Astroph., 553, A76, 1–6.
Melia, F. 2015. On recent claimes concerning the Rh = ct Universe. MNRAS, 446, 1191–1194.
https://doi.org/10.1093/mnras/stu2181
Melia, F. 2017. The linear growth of structure in the Rh = ct Universe. MNRAS, 446, 1191–1194.
https://doi.org/10.1093/mnras/stu2181
Melia, F. and Maier, R. S. 2013. Cosmic chronometers in the Rh = ct Universe. MNRAS, 432, 2669–2675.
https://doi.org/10.1093/mnras/stt596
Milne, E. A. 1935. Relativity, Gravitation and World Structure. Oxford University Press.
Mitra, A. 2014. Why the Rh = ct cosmology is unphysical and in fact a vacuum in disguise like the Milne cosmology. MNRAS, 442, 382–387.
https://doi.org/10.1093/mnras/stu859
Nielsen, J. T., Guffanti, A., and Sarkar, S. 2016. Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep., 6, 35596.
https://doi.org/10.1038/srep35596
Padmanabhan, T. 2002. Theoretical Astrophysics, Vol. III: Galaxies and Cosmology. Ch. 4. Cambridege University Press, UK.
Penzias, A. A. andWilson, R.W. 1965a. A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J., 142, 419–421.
https://doi.org/10.1086/148307
Penzias, A. A. and Wilson, R. W. 1965b. Measurement of the flux density of Cas A at 4080 Mc/s. Astrophys. J., 142, 1149–1154.
https://doi.org/10.1086/148384
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. H., Nugent, P., Castro, P. G., et al. 1998. Measurements of Ω and L from 42 high-redshift supernovae. Astrophys. J., 517, 565–586.
https://doi.org/10.1086/307221
Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnawich, P. M., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 116, 1009–1038.
https://doi.org/10.1086/300499
Sandage, A. 1954. The first four years of extragalactic research with the Hale 200-inch telescope. Astron. J., 59, 180–192.
https://doi.org/10.1086/106981
Sandage, A. 1958. Current problems in the extragalactic distance scale. Astrophys. J., 127, 513–526.
https://doi.org/10.1086/146483
Sapar, A. 1964. Theory of some observable quantities in the cosmology of uniform universe. Publ. Tartu Astrophys. Obs., 34, 223–318.
Sapar, A. 1977. Evidence for the fundamental role of Planck units in cosmology. Publ. Tartu Astrophys. Obs., 45, 204–210.
Sapar, A. 2011. Cosmological neutrino background and connected problems. Balt. Astron., 20, 267–274.
https://doi.org/10.1515/astro-2017-0291
Sapar, A. 2013. Physical alternative to the dark energy paradigm. Balt. Astron., 22, 315–328.
https://doi.org/10.1515/astro-2017-0162
Sapar, A. 2014. Dynamics of cosmic neutrinos in galaxies. Balt. Astron., 23, 71–91.
https://doi.org/10.1515/astro-2017-0173
Sapar, A. 2017. A physical model universe without dark energy and dark matter. Proc. Estonian Acad. Sci., 66, 2, 159–173.
https://doi.org/10.3176/proc.2017.2.06
Starobinsky, A. A. 1980. A new type of isotropic cosmological models without singularity. Phys. Lett. B., 91, 99–102.
https://doi.org/10.1016/0370-2693(80)90670-X
Tatum, E. T. 2018. Why flat space cosmology is superior to standard inflationary cosmology. Journal of Modern Physics, 9, 1867–1882.
Tatum, E. T., Seshavatharam, U. V. S., and Lakshminarayana, S. 2015. Flat space cosmology as an alternative to LCDM cosmology. Frontiers Astron. Astrophys. Cosmology, 1, 98–104.
https://doi.org/10.4236/jmp.2018.97085
https://doi.org/10.4236/jmp.2018.910118
Wei, J-J., Wu, X-F., Melia, F., and Maier, R. S. 2015. A comparative analysis of the supernova legacy survey sample with LCDM and the Rh = ct universe. Astron. J., 149, 102–112.
https://doi.org/10.1088/0004-6256/149/3/102