ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
A novel proton transfer model of the closed equilibrium system H2O–CO2–CaCO3–NHX; pp. 260–270
PDF | https://doi.org/10.3176/proc.2018.3.04

Authors
Toomas Tenno, Ergo Rikmann, Kalev Uiga, Ivar Zekker, Alexey Mashirin, Taavo Tenno
Abstract

Variation in the concentration of dissolved carbon dioxide [CO2]W causes changes in the solubility of limestone and in the pH of an equilibrium system. An elevation of the pH will shift the equilibrium of the reversible reaction NH+4⇌ NH3 + H+ towards the formation of free ammonia (NH3). This results in the inhibition of the activity of microorganisms that perform the biological waste- and reject-water treatment. The model of the system H2O–(CO2)W−CaCO3 was upgraded on the basis of proton transfer principles and taken as the basis for modelling the closed system H2O–(CO2)W–CaCO3–NH4Cl. The distribution of ions and molecules in the closed system H2O–(CO2)W–CaCO3–NHX is described in terms of a structural scheme. A novel proton transfer model was developed to calculate the pH, concentrations of the formed ions and molecules, and proton transfer parameters of the closed equilibrium system using an iteration method. In the formation of the equilibrium system H2O–(CO2)W−CaCO3, as a result of the dissolution of CaCO3, the CO2-3 ions are released and these will accept a certain quantity of protons (Δ[H+]CO2-3), which originate from two sources: the reversible dissociation of water (Δ[H+]H2O) or H2CO3 (Δ[H+]H2O3), which is the product of the reaction between H2O and (CO2)W0. In case the final closed system H2O–(CO2)W–CaCO3–NH4Cl includes small initial concentrations of [CO2]W0, the main amount of protons (Δ[H+]NH+4) comes from the dissociation of NH+4, or if there are higher concentrations of [CO2]W0, the source of protons is H2CO3 (Δ[H+]H2CO3). The developed models were experimentally validated.

References

    1.  Plummer, L. N. and Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta, 1982, 46, 1011−1040.
https://doi.org/10.1016/0016-7037(82)90056-4

    2.  Butler, J. N. Carbon Dioxide Equilibria and Their Applications. Lewis Publishers, Inc., CRC Press, Michigan, 1991, p. 272.

    3.  Trikkel, A., Zevenhoven, R., and Kuusik, R. Modelling SO2 capture by Estonian limestones and dolomites. Proc. Estonian Acad. Sci. Chem., 2000, 49, 53–70.

    4.  Moulin, P. and Roques, H. Zeta potential measurement of calcium carbonate. J. Colloid Interface Sci., 2003, 261, 115–126.
https://doi.org/10.1016/S0021-9797(03)00057-2

    5.  Panthi, S. R. Carbonate chemistry and calcium carbonate saturation state of rural water supply projects in Nepal. In Proceedings of the 7th IWTC, Cairo, Egypt, June 3-5, 2003, 545–560.

    6.  Eriksson, B. K., Rubach, A., and Hillebrand, H. Dominance by a canopy forming seaweed modifies resource and consumer control of bloom-forming macroalgae. Oikos, 2007, 116, 1211–1219.
https://doi.org/10.1111/j.0030-1299.2007.15666.x

    7.  Tenno, T., Rikmann, E., Zekker, I., Tenno, T., Daija, L., and Mashirin, A. Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3–water–gas. Proc. Estonian Acad. Sci., 2016, 65, 68–77.
https://doi.org/10.3176/proc.2016.1.07

    8.  Tenno, T., Uiga, K., Mashirin, A., Zekker, I., and Rikmann, E. Modelling closed equilibrium systems of H2O–dissolved CO2–solid CaCO3. J. Phys. Chem. A., 2017, 121, 3094–3100.
https://doi.org/10.1021/acs.jpca.7b00237

    9.  Hafner, S. D. and Bisogni, J. J. Jr. Modeling of ammonia speciation in anaerobic digesters. Water Res., 2009, 43, 4105−4114.
https://doi.org/10.1016/j.watres.2009.05.044

 10.  Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., et al. Biogeochemistry of landfill leachate plumes. Appl. Geochem., 2001, 16(7–8), 659–718.
https://doi.org/10.1016/S0883-2927(00)00082-2

 11.  Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., and Christensen, T. H. Present and long-term composition of MSW landfill leachate: a review. Crit. Rev. Environ. Sci. Technol., 2010, 32(4), 297−336.
https://doi.org/10.1080/10643380290813462

 12.  Tatsi, A. A. and Zouboulis, A. I. A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki, Greece). Adv. Environ. Res., 2002, 6, 207−219.
https://doi.org/10.1016/S1093-0191(01)00052-1

 13.  Rajagopal, R., Massé, D. I., and Singh, G. A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technol., 2013, 143, 632−641.
https://doi.org/10.1016/j.biortech.2013.06.030

 14.  Zekker, I., Rikmann, E., Loorits, L., Tenno, T., Fritze, H., Tuomivirta, T., et al. Start-up of low temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum. Environ. Technol., 2014, 36(2), 214−225.
https://doi.org/10.1080/09593330.2014.941946

 15.  Berends, D. H. J. G., Salem, S., van der Roest, H. F., and van Loosdrecht, M. C. M. Boosting nitrification with the BABE technology. Water Sci. Technol., 2005, 52, 63–70.
https://doi.org/10.2166/wst.2005.0088

 16.  Zekker, I., Rikmann, E., Mandel, A., Kroon, K., Seiman, A., Mihkelson, J., et al. Step-wise temperature decreasing cultivates a biofilm with high nitrogen removal rates at 9°C in short-term anammox biofilm tests. Environ. Technol., 2016, 37, 1933–1946.
https://doi.org/10.1080/09593330.2015.1135995

 17.  Palstra, S. W. L. and Meijer, H. A. J. Biogenic carbon fraction of biogas and natural gas fuel mixtures determined with 14C. Radiocarbon, 2014, 56, 7–28.
https://doi.org/10.2458/56.16514

 18.  Rikmann, E., Zekker, I., Saluste, A., and Tenno, T. Inoculum-free start-up of biofilm- and sludge-based deammonification systems in pilot scale. Int. J. Environ. Sci. Technol., 2018, 15, 133–148.
https://doi.org/10.1007/s13762-017-1374-3

 19.  Zekker, I., Rikmann, E., Kroon, K., Mandel, A., Mihkelson, J., Tenno, T., and Tenno, T. Ameliorating nitrite inhibition in a low-temperature nitritation–anammox MBBR using bacterial intermediate nitric oxide. Int. J. Environ. Sci. Technol., 2017, 14, 2343–2356.
https://doi.org/10.1007/s13762-017-1321-3

 20.  Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G. Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed., 1976, 48, 835–852.

 21.  Chung, J., Shim, H., Park S., Kim S. J., and Bae, W. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process. Bioproc. Biosystems Eng., 2006, 28(4), 275–282.
https://doi.org/10.1007/s00449-005-0035-y

 22.  Kim, D., Kim, T. S., and Ryu, H. D. Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification. Process Biochem., 2008, 43(4), 406–413.
https://doi.org/10.1016/j.procbio.2008.01.003

 23.  Jin, R-C., Yang, G-F., Yu, J-J., and Zheng, P. The inhibition of the Anammox process: a review. Chem. Eng. J., 2012, 197, 67–79.
https://doi.org/10.1016/j.cej.2012.05.014

 24.  Zheng, X., Sun, P., Lou, J., Cai, J., Song, Y., Yu, S., and Lu, X. Inhibition of free ammonia to the granule-based enhanced biological phosphorus removal system and the recoverability. Bioresource Technol., 2013, 148, 343–351.
https://doi.org/10.1016/j.biortech.2013.08.100

 25.  Jung, J. Y., Kang, S. H., Chung, Y. C., and Ahn, D. H. Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor. Water Sci. Technol., 2007, 55(1), 459–468.
https://doi.org/10.2166/wst.2007.023

 26.  Jaroszynski, L. W., Cicek, N., Sparling, R., and Oleszkiewicz, J. A. Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (Anammox) activity in moving bed biofilm reactors. Bioresource Technol., 2011, 102, 7051–7056.
https://doi.org/10.1016/j.biortech.2011.04.069

 27.  Zekker, I., Rikmann, E., Tenno, T., Vabamäe, P., Kroon, K., Loorits, L., et al. Effect of HCO concentration on anammox nitrogen removal rate in a moving bed biofilm reactor. Environ. Technol., 2012, 33, 2263–2271.
https://doi.org/10.1080/09593330.2012.665487

 28.  Chang, R. Physical Chemistry with Applications to Biological Systems 2nd ed. Williams College, Macmillan Publishing Co., Inc., New York, 1990, 320.

 29.  Pocker, Y. and Bjorkquist, D. W. Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in water and water-d2. Acid-base and metal ion catalysis. J. Am. Chem. Soc., 1977, 99, 6537–6543.
https://doi.org/10.1021/ja00462a012

 30.  Segal, B. G. Chemistry, Experiment and Theory. John Wiley & Sons, Inc., New York, 1989, 363−365.

 31.  Skoog, D. A., West, D. M., and Holler, F. J. Fundamentals of Analytical Chemistry, Sixth ed. Saunders College Publishing, Philadelphia, 1992.

 32.  Dean, J. A. Lange’s Handbook of Chemistry. McGraw-Hill, Inc., New York, 1992.

 33.  Dickerson, R. E., Gray, H. B., and Haight, G. P. Chemical Principles. Third ed. The Benjamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1979.

 34.  Rikmann, E., Zekker, I., Uiga, K., and Tenno, T. 2016. Modelling equilibrium distribution of ions and molecules in a heterogeneous system of CaCO3–water–gas phase containing CO2 under equilibrium condition. In Proceedings of the 10th Linnæus Eco-Tech Conference, Kalmar, Sweden, November 21−23, 2016, 191–203.

 

Back to Issue