ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Response of primary producers to water level fluctuations of Lake Peipsi; pp. 231–245
PDF | https://doi.org/10.3176/proc.2018.3.06

Authors
Helle Mäemets, Reet Laugaste, Kadi Palmik, Marina Haldna
Abstract

The amplitude of natural fluctuation between annual averages of the water level (WL) of Lake Peipsi (3555 km2) is 1.5 m. A study aimed to examine the impact of WL fluctuations on phytoplankton, macrophytes, and their epiphyton was performed annually at littoral stations during 2005–2015. Also the characteristics of pelagic water were collated with the WL. Changes in littoral and pelagial phytoplankton were similar, with the exclusion of massive wind-caused accumulations of cyanobacteria in the littoral. At the lowest WL a significant increase occurred in (a) the biomass of phytoplankton and the share of phytoplankton-derived organic carbon in water and (b) the species richness and biomass of macrophytes, including submerged plants and macroalgae. The abundance of epiphytes did not reveal a clear relation with the WL. The ratios of biomasses in the years with the lowest and the highest average WL were 2.2 for Potamogeton spp. and 2.6 for phytoplankton. The assessment of ecological status at the minimum and the maximum WL differs at least by one quality class. Decisions about ecological status based on phytoplankton and large filamentous green algae at low water may be contrary to decisions based on macrophytes: high biomasses of phytoplankton and macroalgae indicate hypertrophic status, but species-rich macrovegetation and high bio­masses of charophytes and elodeids are considered to be characteristic of meso- to eutrophic water bodies.

References

Arold, I. 2005. Eesti maastikud. Tartu Ülikooli Kirjastus, Tartu.

Bakker, E. and Hilt, S. 2016. Impact of water-level fluctuations on cyanobacterial blooms: options for management. Aquat. Ecol., 50, 485–498.
https://doi.org/10.1007/s10452-015-9556-x

Beaulieu, M., Pick, F., and Gregory-Eaves, I. 2013. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr., 58, 1736–1746.
https://doi.org/10.4319/lo.2013.58.5.1736

Beklioğlu, M., Altınayar, G., and Tan, C. T. 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Arch. Hydrobiol., 166, 535–556.
https://doi.org/10.1127/0003-9136/2006/0166-0535

Blanco, S., Cejudo-Figueiras, C., Álvarez-Blanco, I., Donk, E., Gross, E. M., Hansson, L-A., et al. 2014. Epiphytic diatoms along environmental gradients in Western European shallow lakes. CLEAN- Soil, Air, Water, 42, 229–235.
https://doi.org/10.1002/clen.201200630

Blank, K., Haberman, J., Haldna, M., and Laugaste, R. 2009. Effect of winter conditions on spring nutrient concen­trations and plankton in a large shallow Lake Peipsi (Estonia/Russia). Aquat. Ecol., 43, 745–753.
https://doi.org/10.1007/s10452-009-9283-2

Cobbaert, D., Wong, A. S., and Bayley, S. E. 2015. Resistance to drought affects persistence of alternative regimes in shallow lakes of the Boreal Plains (Alberta, Canada). Freshwater Biol., 60, 2084–2099.
https://doi.org/10.1111/fwb.12633

Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science, 199, 1302–1310.
https://doi.org/10.1126/science.199.4335.1302

Coops, H., Beklioglu, M., and Crisman, T. L. 2003. The role of water-level fluctuations in shallow lake ecosystems – workshop conclusions. Hydrobiologia, 506–509, 23–27.
https://doi.org/10.1023/B:HYDR.0000008595.14393.77

Coops, H. and Van Geest, G. J. 2005. Extreme water-level fluctuations determine aquatic vegetation in modified large-river floodplains. Arch. Hydrobiol., Supplement, 155, 261–274.

Deegan, B. M., White, S. D., and Ganf, G. G. 2007. The influence of water level fluctuations on the growth of four emergent macrophyte species. Aquat. Bot., 86, 309–315.
https://doi.org/10.1016/j.aquabot.2006.11.006

De Winton, M., Casanova, M. T., and Clayton, J. S. 2004. Charophyte germination and establishment under low irradiance. Aquat. Bot., 79, 175–187.
https://doi.org/10.1016/j.aquabot.2004.01.013

Dubyna, D. V., Stojko, S. M., Sytnik, K. M., Tasenkevich, L. A., Shelyag-Sosonko, Y. R., Hejný, S., et al. 1993. Makrofity–indikatory izmenenij prirodnoj sredy. [Macrophytes the indicators of changes of natural environment]. Naukova dumka, Kiev (in Russian).

Granéli, W. 2012. Brownification of lakes. In Encyclopedia of Lakes and Reservoirs (Bengtsson, L., Herschy, R. W., and Fairbridge, R. W., eds), pp. 117120. Springer, Netherlands.

Haldna, M., Milius, A., Laugaste, R., and Kangur, K. 2008. Nutrients and phytoplankton in Lake Peipsi during two periods that differed in water level and temperature. Hydrobiologia, 599, 3–11.
https://doi.org/10.1007/s10750-007-9208-9

Jaani, A. 2001. Water regime. In Lake Peipsi. Meteorolgy, Hydrology, Hydrochemistry (Nõges, T., ed.), pp. 41–53. Sulemees Publishers, Tartu.

Jaani, A., Klaus, L., Pärn, O., Raudsepp, U., Zadonskaja, O., Gronskaja, T., and Solntsev, V. 2008. Hüdroloogia. In Peipsi (Timm, T., Raukas, A., and Haberman, J., eds), pp. 113–155. Eesti Loodusfoto, Tartu.

Jones, J. I. and Sayer, C. D. 2003. Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? Ecology, 84, 2155–2167.
https://doi.org/10.1890/02-0422

Kalin, M. M. and Smith, M. P. 2007. Germination of Chara vulgaris and Nitella flexilis oospores: What are the relevant factors triggering germination? Aquat. Bot., 87, 235–241.
https://doi.org/10.1016/j.aquabot.2007.06.004

Kangur, K., Möls, T., Milius, A., and Laugaste, R. 2003. Phytoplankton response to changed nutrient level in Lake Peipsi (Estonia) in 19922001. Hydrobiologia, 506–509, 265–272.
https://doi.org/10.1023/B:HYDR.0000008574.40590.8f

Kangur, M., Kangur, K., Laugaste, R., Punning, J–M., and Möls, T. 2007. Combining limnological and paleo­limnological approaches in assessing degradation of Lake Pskov. Hydrobiologia, 584, 121–132.
https://doi.org/10.1007/s10750-007-0597-6

Karukäpp, R. 2008. Peipsi nõo pinnamood ja maastikud. In Peipsi (Timm, T., Raukas, A., and Haberman, J., eds), pp. 63–72. Eesti Loodusfoto, Tartu.

Keddy, P. A. 2010. Wetland Ecology. Principles and Conservation. Second edition. Cambridge University Press, New York
https://doi.org/10.1017/CBO9780511778179

Kelly, M. G., Birk, S., Willby, N. J., Denys, L., Drakare, S., Kahlert, M., et al. 2016. Redundancy in the ecological assessment of lakes: Are phytoplankton, macrophytes and phytobenthos all necessary? Sci. Total Environ., 568, 594–602.
https://doi.org/10.1016/j.scitotenv.2016.02.024

Kritzberg, E. S. and Ekström, S. M. 2012. Increasing iron concentrations in surface waters – a factor behind brownification? Biogeosciences, 9, 1465–1478.
https://doi.org/10.5194/bg-9-1465-2012

Larmola, T., Alm, J., Juutinen, S., Saarnio, S., Martikainen, P. J., and Sivola, J. 2004. Floods can cause large interannual differences in littoral net ecosystem productivity. Limnol. Oceanogr., 49, 1896–1906.
https://doi.org/10.4319/lo.2004.49.5.1896

Leira, M. and Cantonati, M. 2008. Effects of water-level fluctuations on lakes: an annotated bibliography. Hydrobiologia, 613, 171–184.
https://doi.org/10.1007/s10750-008-9465-2

Lombardo, P. 2005. Applicability of littoral food-web bio­manipulation for lake management purposes: snails, macrophytes, and water transparency in Northeast Ohio shallow lakes. Lake Reserv. Manag., 21, 186–202.
https://doi.org/10.1080/07438140509354428

Lowe, R. L. 1996. Periphyton patterns in lakes. In Algal Ecology: Freshwater Benthic Ecosystems (Stevenson, R. J., Bothwell, M. L., and Lowe, R. L., eds), pp. 5777. Academic Press, San Diego.
https://doi.org/10.1016/B978-012668450-6/50032-1

Mäemets, H. and Freiberg, L. 2004. Characteristics of reeds on Lake Peipsi and the floristic consequences of their expansion. Limnologica, 34, 83–89.
https://doi.org/10.1016/S0075-9511(04)80025-2

Mäemets, H., Freiberg, L., Haldna, M., and Möls, T. 2006. Inter-annual variability of Potamogeton perfoliatus stands. Aquat. Bot., 85, 177–183.
https://doi.org/10.1016/j.aquabot.2006.03.008

Milius, A., Laugaste, R., Möls, T., Haldna, M., and Kangur, K. 2005. Water level and water temperature as factors determining phytoplankton biomass and nutrient content in Lake Peipsi. Proc. Estonian Acad. Sci. Biol. Ecol., 54, 5–17.

Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., et al. 2011. Allied attack: climate change and eutrophication. Inland Waters, 1, 101–105.
https://doi.org/10.5268/IW-1.2.359

Nõges, P. and Nõges, T. 1998. The effect of fluctuating water level on ecosystem of Lake Võrtsjärv, Central Estonia. Proc. Estonian Acad. Sci. Biol. Ecol., 47, 98–113.

Nõges, P. and Tuvikene, L. 2012. Spatial and annual variability of environmental and phytoplankton indicators in Lake Võrtsjärv: implications for water quality monitoring. Estonian J. Ecol., 61, 227–246.
https://doi.org/10.3176/eco.2012.4.01

Peterson, U. and Liira, J. 2016. Eesti ja Euroopa järvede kaldaveetaimestiku, põhiliselt rannaroostike dünaa­mika Landsati piltide aegreas. In Eesti kaugseire 2016 (Peterson, U., Lillemaa, T., eds), pp. 119–135. Tartu Observatoorium, Tõravere.

Piirimäe, K., Loigu, E., Pachel, K., and Iital, A. 2015. Virtual mapping of reference conditions of pollutant load in waterbodies: phosphorus in the Lake Peipsi basin. Boreal Environ. Res., 20, 391–402.

Pinnaveekogumite moodustamise kord ja nende pinnavee­kogumite nimestik, mille seisundiklass tuleb määrata, pinnaveekogumite seisundiklassid ja seisundi­klassidele vastavad kvaliteedinäitajate väärtused ning seisundi­klasside määramise kord. 2009. Keskkonnaministri 28. juuli 2009. a määrus nr 44.

Preston, C. D. and Croft, J. M. 1997. Aquatic Plants in Britain and Ireland. Harley Books, UK.

Protopopova, E. V. 2003. Littoral phytoplankton of Lake Ladoga in the summer 2002. In Proceedings of the Fourth International Lake Ladoga Symposium (Simola, H., Terzhevik, A. Y., Viljanen, M., and Holopainen, I. J., eds), pp. 214–219. University of Joensuu. Publications of Karelian Institute, No. 138.

Rodusky, A. J. 2010. The influence of large water level fluctuations and hurricanes on periphyton and associated nutrient storage in subtropical Lake Okeechobee, USA. Aquat. Ecol., 44, 797–815.
https://doi.org/10.1007/s10452-010-9317-9

Sánchez, M. L., Pérez, G. L., Izaguirre, I., and Pizarro, H. 2013. Influence of underwater light climate on periphyton and phytoplankton communities in shallow lakes from the Pampa plain (Argentina) with contrasting steady states. J. Limnol., 72, 62–78.
https://doi.org/10.4081/jlimnol.2013.e6

Scheffer, M. and Van Nes, E. H. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia, 584, 455–466.
https://doi.org/10.1007/978-1-4020-6399-2_41

Schweizer, A. 1997. From littoral to pelagial: comparing the distribution of phytoplankton and ciliated protozoa along a transect. J. Plankton Res., 19, 829–848.
https://doi.org/10.1093/plankt/19.7.829

Stroom, J. M. and Kardinaal, W. E. 2016. How to combat cyanobacterial blooms: strategy toward preventive lake restoration and reactive control measures. Aquat. Ecol., 50, 541–576.
https://doi.org/10.1007/s10452-016-9593-0

Takatori, S., and Imahori, K. 1971. Light reactions in the control of oospore germination of Chara delicatula. Phycologica, 10, 221–228.
https://doi.org/10.2216/i0031-8884-10-2-221.1

Tammeorg, O., Horppila, J., Tammeorg, P., Haldna, M., and Niemistö, J. 2016. Internal phosphorus loading across a cascade of three eutrophic basins: a synthesis of short- and long-term studies. Sci. Total Environ., 572, 943–954.
https://doi.org/10.1016/j.scitotenv.2016.07.224

Tuvikene, L. 2018. The Effect of Natural Variability on the Assessment of Ecological Status of Shallow Lakes. PhD thesis. Estonian University of Life Sciences, Tartu.

Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Mitteilungen der Inter­nationalen Vereinigung für Theoretische und Angewandte Limnologie, 9, 1–38.

Van Nes, E. H., Scheffer, M., van den Berg, M. S., and Coops, H. 2002. Dominance of charophytes in eutrophic shallow lakes – when should we expect it to be an alternative stable state? Aquat. Bot., 72, 275–296.
https://doi.org/10.1016/S0304-3770(01)00206-6

Vollenweider, R. A., Munawar, M., and Stadelman, P. 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Board Can., 31, 739–762.
https://doi.org/10.1139/f74-100

Vretare, V., Weisner, S. E. B., Strand, J. A., and Granéli, W. 2001. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquat. Bot., 69, 127–145.
https://doi.org/10.1016/S0304-3770(01)00134-6

Wantzen, K. M., Junk, W. J., and Rothaupt, K. O. 2008. An extension of the floodpulse concept (FPC) for lakes. Hydrobiologia, 613, 151–170.
https://doi.org/10.1007/s10750-008-9480-3

Wetzel, R. 1992. Gradient-dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229, 181–198.

Wetzel, R. G. 2001. Limnology. Lake and River Ecosystems. Third edition. Academic Press, San Diego.
https://doi.org/10.1007/978-94-011-2474-4_14

Zhang, C., Xueping, G., Wang, L., and Xiaojun, C. 2015. Modelling the role of epiphyton and water level for submerged macrophyte development with a modified submerged aquatic vegetation model in a shallow reservoir in China. Ecol. Eng., 81, 123–132.
https://doi.org/10.1016/j.ecoleng.2015.04.048

Back to Issue