The realization problem of nonlinear time-varying input–output equations is considered. Differentials of the state coordinates, necessary for realization, are determined by the vector space of differential one-forms, spanned over the field of meromorphic functions. Formulas for computing the basis one-forms are given, based on the Euclidean division of noncommutative polynomials. Moreover, it is shown that in the case of a reducible system, the subspace admits a basis with certain structure, explicitly related to reduced input–output equations.
1. Aranda-Bricaire, E., Moog, C. H., and Pomet, J.-B. A linear algebraic framework for dynamic feedback linarization. IEEE Trans. Autom. Control, 1995, 40, 127–132.
https://doi.org/10.1109/9.362886
2. Bartosiewicz, Z., Kotta, Ü., Tõnso, M., and Wyrwas, M. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Math. Control Related Fields, 2016, 6, 217–250.
https://doi.org/10.3934/mcrf.2016002
3. Belikov, J., Kotta, Ü., and Tõnso, M. Adjoint polynomial formulas for nonlinear state-space realization. IEEE Trans. Autom. Control, 2014, 59, 256–261.
https://doi.org/10.1109/TAC.2013.2270868
4. Belikov, J., Kotta, Ü., and Tõnso,M. Realization of nonlinearMIMO system on homogeneous time scales. European J. Control, 2015, 23, 48–54.
https://doi.org/10.1016/j.ejcon.2015.01.006
5. Bronstein, M. and Petkovšek, M. An introduction to pseudo-linear algebra. Theor. Comput. Sci., 1996, 157, 3–33.
https://doi.org/10.1016/0304-3975(95)00173-5
6. Choquet-Bruhat, Y., DeWitt-Morette, C., and Dillard-Bleichi, M. Analysis, Manifolds and Physics: Part I: Basics. North-Holland, Amsterdam, 1982.
7. Conte, G., Moog, C. H., and Perdon, A. M. Algebraic Methods for Nonlinear Control Systems. Springer, London, 2007.
https://doi.org/10.1007/978-1-84628-595-0
8. Crouch, P. E. and Lamnabhi-Lagarrigue, F. State space realizations of nonlinear systems defined by input-output differential equations. In Analysis and Optimization of Systems (Bensoussan, A. and Lions, J. L., eds), LNCIS, 1988, 111, 138–149.
https://doi.org/10.1007/BFb0042209
9. Delaleau, E. and Respondek,W. Lowering the orders of derivatives of controls in generalized state space systems. J. Math. Syst. Est. Control, 1995, 5, 1–27.
10. Halás, M. An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica, 2008, 44, 1181–1190.
https://doi.org/10.1016/j.automatica.2007.09.008
11. Kolchin, E. Differential Algebra and Algebraic Groups. Academic Press, London, 1973.
12. Kotta, Ü., Moog, C. H., and Tõnso, M. Minimal realizations of nonlinear sytems. Automatica, 2018 (accepted).
https://doi.org/10.1016/j.automatica.2018.05.007
13. Kotta, Ü., Moog, C. H., and Tõnso, M. The minimal time-varying realization of a nonlinear time-invariant system. In 9th IFAC Symposium on Nonlinear Control Systems, NOLCOS 2013: Toulouse, France, September 4–6, 2013, Proceedings
https://doi.org/10.3182/20130904-3-FR-2041.00080
(Tarbouriech, S. and Krstic, M., eds). IFAC-Elsevier, Toulouse, 2013, 518–523.
14. Kotta, Ü. and Mullari, T. Equivalence of different realization methods for higher order nonlinear input-output differential equations. European J. Control, 2005, 11, 185–193.
https://doi.org/10.3166/ejc.11.185-193
15. Kotta, Ü. and Mullari, T. Equivalence of realizability conditions for nonlinear control systems. Proc. Estonian Acad. Sci. Phys. Math., 2006, 55, 24–42.
16. Pereira da Silva, P. S. Some remarks on static feedback linearization for time-varying systems. Automatica, 2008, 44, 3219–3221.
https://doi.org/10.1016/j.automatica.2008.10.001
17. Pereira da Silva, P. S. and Batista, S. On state representations of time-varying nonlinear systems. Automatica, 2009, 45, 1260–1264.
https://doi.org/10.1016/j.automatica.2008.12.025
18. Pereira da Silva, P. S. and Batista, S. On state representations of nonlinear implicit systems. Int. J. Control, 2010, 83, 441–456.
https://doi.org/10.1080/00207170903193441
19. Van der Schaft, A. J. On realization of nonlinear systems described by higher-order differential equations. Math. Systems Theory, 1987, 19, 239–275.
https://doi.org/10.1007/BF01704916
20. Zheng, Y., Willems, J. C., and Zhang, C. A polynomial approach to nonlinear system controllability. IEEE Trans. Autom. Control, 2001, 46, 1782–1788.
https://doi.org/10.1109/9.964691