ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Electrical conductivity of a closed-circuit embroidery element; pp. 158–164
PDF | https://doi.org/10.3176/proc.2018.2.07

Authors
Žaneta Juchnevičienė, Ugis Briedis, Aleksandrs Vališevskis, Milda Jucienė, Vaida Dobilaitė, Virginija Sacevičienė
Abstract

The electrical conductivity of the embroidery system and its resistance against the static charge depend on various factors, such as the properties of the textile materials, the direction of the embroidering, the form of the element, the technological parameters of the embroidery process, etc. Therefore, the factors that have an impact on the embroidered electrically conductive system are a relevant topic of scientific research. The aim of this work was to investigate and analyse the influence of the technological parameters of the embroidery processes on the electrical conductivity of embroidery elements. Three fabrics of the same fibre composition but of different structure were used in the research. The electrical conductivity of the embroidery element was found to differ when the technological parameters of the embroidery process were not the same.

References

    1.  Varnaitė, S., Vitkauskas, A., Abraitienė, A., Rubežienė, V., and Valienė, V. The features of electric charge decay in the polyester fabric containing metal fibres. Materials Science (Medžiagotyra), 2008, 14(2), 157–161.

    2.  Parkova, I., Vališevskis, A., Briedis, U., and Viļumsone, A. Design of textile moisture sensor for enuresis alarm system. Materials Science. Textile and Clothing Technology, 2012, 7, 44–49.

    3.  Briedis, U., Vališevskis, A., and Grecka, M. Development of a smart garment prototype with enuresis alarm using an embroidery-machine-based technique for the integration of electronic components. Procedia Computer Science, 2017, 104, 369–374.
https://doi.org/10.1016/j.procs.2017.01.147

    4.  Zhang, S., Chauraya, A., Whittow, W., Seager, R., Acti, T., Dias, T., and Vardaxoglou, Y. Embroidered wearable antennas using conductive threads with different stitch spacings. In Loughborough Antennas & Propagation Conference; 1213 November 2012, Loughborough, UK. 2012, 1–4.
https://doi.org/10.1109/LAPC.2012.6403059

    5.  Chauraya, A., Seager, R., Whittow, W., Zhang, S., and Vardaxoglou, Y. Embroidered frequency selective surfaces on textiles for wearable applications. In Loughborough Antennas & Propagation Conference. 11–12 November 2013, Loughborough, UK. 2013, 388–391.
https://doi.org/10.1109/LAPC.2013.6711926

    6.  Maleska, T. and Kabacik, P. Bandwidth properties of embroidered loop antenna for wearable applications. In Proceedings of the 3rd European Wireless Technology Conference, Paris, France, 27–28 September. 2010, 89–92.

    7.  Mikhajlovich, I. O. Razvitie teorii i tekhnologii proiz­vodstva elektroflokirovannykh tekstil′nykh materialov. Dissertation. St. Petersburg, 2008. http: //www.dissercat. com/content/razvitie-teorii-i-tekhnologii-proizvodstva-elektroflokirovannykh-tekstilnykh-materialov (accessed 2017-05-15).

    8.  Zabetakis, D., Dinderman, M., and Schoen, P. Metal-coated cellulose fibers for use in composites applicable to microwave technology. Adv. Mater., 2005, 17(6), 734–738.
https://doi.org/10.1002/adma.200400320

    9.  Negru, D., Buda, C-T., and Avram, D. Electrical conductivity of woven fabrics coated with carbon black particles. Fibres Text. East. Eur., 2012, 20(1(90)), 53–56.

 10.  Pinar, A. and Michalak, L. Influence of structural parameters of wale-knitted fabrics on their electro­static properties. Fibres Text. East. Eur., 2006, 5(59), 69–74.

 11.  LST EN 1049-2:1998. Textiles – Woven Fabrics – Construction – Methods of Analysis – Part 2: Determination of Number of Threads per Unit Length.

 12.  LST EN ISO 3801:1998. Textiles. Woven Fabrics. Determination of Mass per Unit Length and Mass per Unit Area.

 13.  LST EN ISO 5084:2000. Textiles – Determination of Thickness of Textiles and Textile Products.

 14.  Juchnevičienė, Ž., Jucienė, M., and Radavičienė, S. The research on the width of the closed-circuit square-shaped embroidery element. Materials Science (Medžiagotyra), 2017, 23(2), 170–174.
https://doi.org/10.5755/j01.ms.23.2.16095

 15.  Radavičienė, S. and Jucienė, M. Influence of embroidery threads on the accuracy of embroidery pattern dimensions. Fibres Text. East. Eur., 2012, 20, 3(92), 92–97.

 16.  Radavičienė, S. and Jucienė, M. Investigation of mechanical properties of embroidery threads. In 5th International Textile, Clothing & Design Conference, Zagreb, 3–6 October. 2010, 494–499.

 17.  Bekampienė, P. and Domskienė, J. Influence of stitching pattern on deformation behaviour of woven fabric during forming. Materials Science (Medžiagotyra), 2010, 6(3), 226–230.

 18.  Pavlinič, D. Z. and Geršak, J. Investigations of the relation between fabric mechanical properties and behaviour. Int. J. Cloth. Sci. Tech., 2003, 15(3/4), 231–240.
https://doi.org/10.1108/09556220310478332

 19.  Radavičienė, S., Jucienė, M., Juchnevičienė, Ž., Čepukonė, L., Vilumsone A., Briedis, U., and Baltina, I. Analysis of shape nonconformity between embroidered element and its digital image. Materials Science (Medžiagotyra), 2014, 20(1), 84–89.
https://doi.org/10.5755/j01.ms.20.1.2911

 20.  Radavičienė, S. and Jucienė, M. Buckling of the woven fabric inside an embroidered element Proc. Estonian Acad. Sci., 2013, 62, 187–192.
https://doi.org/10.3176/proc.2013.3.04

 21.  Tsolis, A., Whittow, W. G., Antonis, A. A., and Vardaxoglou. C. J. Embroidery and related manu­facturing techniques for wearable antennas: challenges and opportunities. Electronics, 2014, 3, 314–338.

 22.  Akerfeldt, M., Lund, A., and Walkenstrom, P. Textile sensing glove with piezoelectric PVDF fibers and printed electrodes of PEDOT:PSS. Text. Res. J., 2015, 85, 1789–1799.
https://doi.org/10.1177/0040517515578333

 23.  Bekampienė, P. and Domskienė, J. Influence of stitching pattern on deformation behaviour of woven fabric during forming. Materials Science (Medžiagotyra), 2010, 6(3), 226–230.

 24.  Pavlinič, D. Z. and Geršak, J. Investigations of the relation between fabric mechanical properties and behaviour. Int. J. Cloth. Sci. Tech., 2003, 15(3/4), 231–240.
https://doi.org/10.1108/09556220310478332

25. Hosseinali, F. A. Investigation on the Tensile Properties of Individual Cotton (Gossypium hirsutum L.). MSc thesis. Texas Tech University, Lubbock, TX, 2012.

Back to Issue