Doping is an effective material re-engineering technique, which provides a possibility of improving properties of materials for different applications. Herein, a Zr-doped TiO2 thin film was deposited applying the chemical spray pyrolysis method and the influence of varying zirconium dopant concentrations on the properties of the film was studied. Morphological studies showed that the Zr–TiO2 films were homogeneous with smaller grain sizes compared to the undoped TiO2 films. As-deposited Zr–TiO2 films were amorphous while the undoped TiO2 films were crystalline with anatase structure as revealed by both X-ray diffraction and Raman spectroscopy studies. The optical band gap of the Zr–TiO2 film was higher (3.44 eV) than that of the undoped TiO2 films (3.13 eV) showing a strong dependence on the phase composition. As revealed by energy dispersive spectroscopy analysis, the Zr/Ti ratio in the film increased from 0.014 to 0.13 as the doping concentration in the spray solution was increased from 5 to 40 mol%. The current–voltage (I–V) characteristic revealed a reduction of the leakage current in the Zr-doped TiO2 film (6.06 × 10–5 A) compared to the undoped TiO2 films (1.69 × 10–3 A) at 1 forward bias voltage. The dielectric relaxation response at the oxide–electrode interface dipole was strongly influenced by the Zr doping concentration in the film.
1. Barquinha, P., Martins, R., Pereira, L., and Fortunato, E. Transparent Oxide Electronics. John Wiley and Sons, United Kingdom, 2012.
https://doi.org/10.1002/9781119966999
2. Bengi, A., Aydemir, U., Altındal, Ş., Özen, Y., and Özçelik, S. A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. J. Alloys Comp., 2010, 505, 628–633.
https://doi.org/10.1016/j.jallcom.2010.06.095
3. Lee, M-K., Yen, C-F., and Fan, C-H. High dielectric constant of nickel-doped titanium oxide films prepared by liquid-phase deposition, Appl. Phys. A, 2014, 116, 2007–2010.
https://doi.org/10.1007/s00339-014-8386-3
4. Frank, A. J., Kopidakis, N., and van de Lagemaat, J. Electrons in nanostructured TiO2 solar cell: transport recombination and photovoltaic properties. Coord. Chem. Rev., 2004, 248, 1165–1179.
https://doi.org/10.1016/j.ccr.2004.03.015
5. Kim, S. K., Kim, K. M., Jeong, D. S., Jeon, W., Yoon, K. J., and Hwang, C. S. Titanium dioxide thin films for next generation memory devices. J. Mater. Res., 2013, 28, 313–325.
https://doi.org/10.1557/jmr.2012.231
6. Es-Souni, M., Oja, I., and Krunks, M. Chemical solution deposition of thin TiO2-anatase films for dielectric application. J. Mater. Sci. – Mater. El., 2004, 15, 341–344.
https://doi.org/10.1023/B:JMSE.0000025674.21086.cc
7. Woebkenberg, P. H., Ishwara, T., Nelson, J., Bradley, D-D. C., Haque, S. A., and Anthopoulos, T. D. TiO2 thin film tansistor fabricated by spray pyrolysis. Appl. Phys. Lett., 2010, 96, 082116.
https://doi.org/10.1063/1.3330944
8. Schiller, R., Weiss, C-K., and Landfester, K. Phase stability and photocatalytic activity of Zr-doped anatase synthesised in miniemulsion. J. Nanotechnol., 2010, 21, 405603.
https://doi.org/10.1088/0957-4484/21/40/405603
9. Liu, G., Yang, H. G., Wang, X., Cheng, L., Pan, J., Lu, G. Q., and Cheng, H. M. Nano sized anatase TiO2 single crystals for enhanced photocatalytic activity. J. Am. Chem. Soc., 2009, 131, 12868.
https://doi.org/10.1021/ja903463q
10. Reidy, D. J., Holmes, J. D., and Morris, M. A. The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc., 2006, 26, 1527–1534.
https://doi.org/10.1016/j.jeurceramsoc.2005.03.246
11. Juma, A., Oja-Acik, I., Oluwabi, A. T., Mere, A., Mikli, V., Danilson, M., and Krunks, M. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis. Appl. Surf. Sci., 2016, 387, 539–545.
https://doi.org/10.1016/j.apsusc.2016.06.093
12. Hernández-Alonso, M. D., Coronado, J. M., Bachiller-Baeza, B., Fernández-García, M., and Soria, J. Influence of structural and surface characteristics of Ti1–xZrxO2 nanoparticles on the photocatalytic degradation of methylcyclohexane in the gas phase. Chem. Mater., 2007, 19, 4283–4291.
https://doi.org/10.1021/cm070212w
13. Huang, Y., Zheng, Z., Al, Z., Zhang, L., Fan, X., and Zou, Z. Core shell microspherical Ti-Zr-O2 solid solution photocatalyst directly from ultrasonic spray pyrolysis. J. Phys. Chem. B, 2006, 110, 19323–19328.
https://doi.org/10.1021/jp064135o
14. Lukáč, J., Klementová, M., Bezdička, P., Bakardjieva, S., Šubrt, J., Szatmáry, L., et al. Influence of Zr as TiO2 doping on photocatalytic degradation of 4-chlorophenol. Appl. Catal. B-Environ., 2007, 74, 83–91.
https://doi.org/10.1016/j.apcatb.2007.01.014
15. Wang, J., Yu, Y., Li, S., Guo, L., Wang, E., and Cao, Y. Doping behaviour of Zr4+ ions in Zr4+-doped TiO2 nanoparticles. J. Phys. Chem. C, 2013, 117, 27120–27126.
https://doi.org/10.1021/jp407662d
16. Patil, P. S. Versatility of chemical spray pyrolysis technique. Math. Chem. Phys., 1999, 59, 185–198.
https://doi.org/10.1016/S0254-0584(99)00049-8
17. Castañeda, L., Alonso, J. C., Ortiz, A., Andrade, E., Saniger, J. M., and Banuelos, J. G. Spray pyrolysis deposition and characterization of titanium oxide thin films. Mater. Chem. Phys., 2002, 77, 938–944.
https://doi.org/10.1016/S0254-0584(02)00193-1
18. Okuya, M., Prokudina, N. A., Mushika, K., and Kaneko, S. TiO2 thin film synthesised by spray pyrolysis deposition technique. J. Eur. Ceram. Soc., 1999, 19, 903–906.
https://doi.org/10.1016/S0955-2219(98)00341-0
19. Gokulakrishnan, V., Parthiban, S., Jeganathan, K., and Ramamurthi, K. Investigation on the effect of Zr doping in ZnO thin films by spray pyrolysis. Appl. Surf. Sci., 2011, 257, 9068–9072.
https://doi.org/10.1016/j.apsusc.2011.05.102
20. Herodotou, S. Zirconium Doped Zinc Oxide Thin Film Deposited by Atomic Layer. PhD thesis. The University of Liverpool, 2015. http://livrepository.liverpool.ac.uk/ 2013045 201 (accessed 2018-03-12).
21. Gao, B., Lim, T. M., Subagio, D. P., and Lim, T.-T. Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol A. Appl. Catal. A-Gen., 2010, 375, 107–115.
https://doi.org/10.1016/j.apcata.2009.12.025
22. Hanaor, D. A. H. and Sorrell, C. C. Review of the anatase to rutile phase transformation. J. Mater. Sci., 2011, 46, 855–874.
https://doi.org/10.1007/s10853-010-5113-0
23. Gnatyuk, Yu., Smirnova, N., Korduban, O., and Eremenko, A. Effect of zirconium incorporation on the stabilization of TiO2 mesoporous structure. Surf. Interface. Anal., 2010, 42, 1276–1280.
https://doi.org/10.1002/sia.3494
24. Ohsaka, T., Izumi, F., and Fujiki, Y. Raman spectrum of anatase TiO2. J. Raman Spectrosc., 1978, 7, 321–324.
https://doi.org/10.1002/jrs.1250070606
25. Zhang, W. F., He, Y. L., Zhang, M. S., Yin, Z., and Chen, Q. Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D. Appl. Phys., 2000, 33, 912–916.
https://doi.org/10.1088/0022-3727/33/8/305
26. Bineesh, K. V., Kim, D-K., and Park, D-W. Synthesis and characterisation of zirconium-doped mesoporous nano-crystalline TiO2. Nanoscale, 2010, 2, 1222–1228.
https://doi.org/10.1039/c0nr00108b
27. Kim, S-S., Yum, J-H., and Sung, Y-E. Flexible dye-sensitized solar cells using ZnO coated TiO2 nanoparticles. J. Photochem. Photobiol. A. Chem., 2005, 171, 269–273.
https://doi.org/10.1016/j.jphotochem.2004.10.019
28. Bensaha, R. and Bensouyad, H. Synthesis, characterisation and properties of zirconium oxide (ZrO2)-doped titanium oxide (TiO2) thin films obtained via sol-gel process. In Heat Treatment – Conventional and Novel Applications (Czervinski, F., ed.). IntechOpen, 2012, chapter 10, 207–234.
https://doi.org/10.5772/51155
29. Pankove, J. I. Optical Process in Semiconductors. Prentice-Hall, Englewood Cliffs, NJ, 1971.
30. Zhao X. K. and Fendler, J. H. Size quantization in semiconductor particulate films. J. Phys. Chem., 1991, 95, 3716–3721.
https://doi.org/10.1021/j100162a051
31. Tang, H., Prasad, K., Sanjinès, R., Schmid, P. E., and Lévy, F. Electrical and optical properties of TiO2 anatase thin film. J. Appl. Phys., 1994, 75, 2042–2204.
https://doi.org/10.1063/1.356306
32. Yao, X., Wang, X., Su, L., Yan, H., and Yao, M. Band structure and photocatalytic properties of N/Zr co-doped anatase TiO2 from frist-principle study. J. Mol. Catal. A-Chem., 2011, 351, 11–16.
https://doi.org/10.1016/j.molcata.2011.09.027
33. Lippens, P. E., Chadwick, A. V., Weibel, A., Bouchet, R., and Knauth, P. Structure and chemical bonding in Zr-doped anatase TiO2 nanocrystals. J. Phys. Chem. C, 2008, 112, 43–47.
https://doi.org/10.1021/jp075898u
34. Venkatachalam, N., Palanichamy, M., Arabindoo, B., and Murugesan, V. Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. J. Mol. Catal. A-Chem., 2007, 266, 158–165.
https://doi.org/10.1016/j.molcata.2006.10.051
35. Juma, A. O., Oja Acik, I., Mere, A., and Krunks, M. Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature. Appl. Phys. A-Mater., 2016, 122, 359.
36. Zeyrek, S., Altındal, S., Yüzer, H., and Bülbül, M. M. Current transport mechanism in Al/Si3N4/p-Si (MIS) Schottky barrier diodes at low temperatures. Appl. Surf. Sci., 2006, 252, 2999–3010.
https://doi.org/10.1016/j.apsusc.2005.05.008
37. Enright, B. and Fitzmaurice, D. Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film. J. Phys. Chem., 1996, 100, 1027–1035.
https://doi.org/10.1021/jp951142w
38. Xue, H., Chen, W., Liu, C., Kong, X., Qu, P., Liu, Z., et al. Fabrication of TiO2 Schottky barrier diodes by RF magnetron sputtering. In Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Sanya, China, 2008, 108–111.
39. Chakraborty, S., Bera, M. K., Bhattacharya, S., and Maiti, C. K. Current conduction mechanism in TiO2 gate dielectrics. Microelectron. Eng., 2005, 81, 188–193.
https://doi.org/10.1016/j.mee.2005.03.005
40. Sönmezoglu, S. and Akın, S. Current transport mechanism of antimony-doped TiO2 nanoparticles based on MOS device. Sensor. Actuat. A-Phys., 2013, 199, 18–23.
41. Abrantes, J. C. C., Labrincha, J. A., and Frade, J. R. An alternative representation of impedance spectra of ceramics. Mater. Res. Bull., 2000, 35, 727–740.
https://doi.org/10.1016/S0025-5408(00)00269-5
https://doi.org/10.1016/S0025-5408(00)00281-6
https://doi.org/10.1016/S0025-5408(00)00282-8
42. Walke, P., Bouregba, R., Lefevre, A., Parat, G., Lallemand, F., Voiron, F., et al. Giant dielectric constant in TiO2/Al2O3 nanolaminates grown on doped silicon substrate by pulsed laser deposition. J. Appl. Phys., 2014, 115, 094103.
https://doi.org/10.1063/1.4867780
43. Zhao, C., Zhao, C. Z., Werner, M., Taylor, S., and Chalker, P. Dielectric relaxation of high-k oxides. Nanoscale Res. Lett., 2013, 8, 456.
https://doi.org/10.1186/1556-276X-8-456
https://doi.org/10.1186/1556-276X-8-172