ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Enhancing binding properties of imprinted polymers for the detection of small molecules; pp. 138–146
PDF | https://doi.org/10.3176/proc.2018.2.04

Authors
Akinrinade George Ayankojo, Jekaterina Reut, Andres Öpik, Aleksei Tretjakov, Vitali Syritski
Abstract

This study demonstrates the promising steps towards improving the detection of small analytes in an aqueous solution by the quartz crystal microbalance (QCM) modified with a molecularly imprinted polymer (MIP) based sensitive layer. A homogeneous thin polymer film of poly(m-phenylenediamine) (PmPD) was electrochemically deposited on the surface of a QCM sensor in the presence of sulphamethizole (SMZ) acting as a template molecule. The binding capacity of the resulting SMZ–MIP films was enhanced by modifying the sensing surface with a diethylaminoethyl-dextran (DEAE-Dex) layer, forming a SMZ–MIP(Dex) film. The dextran layer allows further preconcentration of template molecules on the sensor electrode before polymer electrodeposition. The relative adsorption of the SMZ–MIP(Dex) films, as designated by the imprinting factors, was found to be in all cases significantly higher than that of the other films. At least about three times enhanced relative binding capacity of the modified imprinted polymer on the QCM sensor was established. A probe of the analysed sensor signals revealed that the modification steps significantly reduced the contribution from nonspecific interaction of the polymer matrix, thus suggesting beneficial effects of the dextran modification and template preconcentration. The presented approach promises a positive route towards an improved specific detection of small molecules by molecular imprinting on QCM sensor transducers.

References

    1.  Wang, Y. Z., Wei, D. P., Yang, H., Yang, Y., Xing, W. W., Li, Y., and Deng, A. P. Development of a highly sensitive and specific monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Sudan I in food samples. Talanta, 2009, 77(5), 1783–1789.
https://doi.org/10.1016/j.talanta.2008.10.016

    2.  Bicker, J., Fortuna, A., Alves, G., and Falcão, A. Liquid chromatographic methods for the quantification of catecholamines and their metabolites in several biological samples – a review. Anal. Chim. Acta, 2013, 768, 12–34.
https://doi.org/10.1016/j.aca.2012.12.030

    3.  Lee, C. H., Shin, Y., Nam, M. W., Jeong, K. M., and Lee, J. A new analytical method to determine non-steroidal anti-inflammatory drugs in surface water using in situ derivatization combined with ultrasound-assisted emulsification microextraction followed by gas chromatography–mass spectrometry. Talanta, 2014, 129, 552–559.
https://doi.org/10.1016/j.talanta.2014.06.027

    4.  Paya, P., Anastassiades, M., Mack, D., Sigalova, I., Tasdelen, B., Oliva, J., and Barba, A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem., 2007, 389(6), 1697–1714.
https://doi.org/10.1007/s00216-007-1610-7

    5.  Svenson, J. and Nicholls, I. A. On the thermal and chemical stability of molecularly imprinted polymers. Anal. Chim. Acta, 2001, 435(1), 19–24.
https://doi.org/10.1016/S0003-2670(00)01396-9

    6.  Hillberg, A. L., Brain, K. R., and Allender, C. J. Molecular imprinted polymer sensors: implications for therapeutics. Adv. Drug Deliv. Rev., 2005, 57(12), 1875–1889.
https://doi.org/10.1016/j.addr.2005.07.016

    7.  Tretjakov, A., Syritski, V., Reut, J., Boroznjak, R., Volobujeva, O., and Öpik, A. Surface molecularly imprinted polydopamine films for recognition of immunoglobulin G. Microchim. Acta, 2013, 180(15–16), 1433–1442.
https://doi.org/10.1007/s00604-013-1039-y

    8.  Malitesta, C., Mazzotta, E., Picca, R. A., Poma, A., Chianella, I., and Piletsky, S. A. MIP sensors – the electrochemical approach. Anal. Bioanal. Chem., 2012, 402(5), 1827–1846.
https://doi.org/10.1007/s00216-011-5405-5

    9.  Cennamo, N., D’Agostino, G., Pesavento, M., and Zeni, L. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of L-nicotine. Sensor. Actuat. B-Chem., 2014, 191, 529–536.
https://doi.org/10.1016/j.snb.2013.10.067

 10.  Verma, R. and Gupta, B. D. Optical fiber sensor for the detection of tetracycline using surface plasmon resonance and molecular imprinting. Analyst, 2013, 138(23), 7254–7263.
https://doi.org/10.1039/c3an01098h

 11.  El-Sharif, H. F., Aizawa, H., and Reddy, S. M. Spectroscopic and quartz crystal microbalance (QCM) characterisation of protein-based MIPs. Sensor. Actuat. B-Chem., 2015, 206, 239–245.

 12.  Kotova, K., Hussain, M., Mustafa, G., and Lieberzeit, P. A. MIP sensors on the way to biotech applications: targeting selectivity. Sensor. Actuat. B-Chem., 2013, 189, 199–202.

 13.  Wang, Y., Tang, J., Luo, X. Y., Hu, X. Y., Yang, C., and Xu, Q. Development of a sensitive and selective kojic acid sensor based on molecularly imprinted polymer modified electrode in the lab-on-valve system. Talanta, 2011, 85(5), 2522–2527.
https://doi.org/10.1016/j.talanta.2011.08.014

 14.  Hong, C. C., Chang, P. H., Lin, C. C., and Hong, C. L. A disposable microfluidic biochip with on-chip molecularly imprinted biosensors for optical detection of anesthetic propofol. Biosens. Bioelectron., 2010, 25(9), 2058–2064.
https://doi.org/10.1016/j.bios.2010.01.037

 15.  Liu, Y. X., Wang, Y., Liu, L., He, Y. H., He, Q. H., and Ji, Y. H. The detection method for small molecules coupled with a molecularly imprinted polymer/quantum dot chip using a home-built optical system. Anal. Bioanal. Chem., 2016, 408(19), 5261–5268.
https://doi.org/10.1007/s00216-016-9620-y

 16.  Syritski, V., Reut, J., Menaker, A., Gyurcsanyi, R. E., and Öpik, A. Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of L-aspartic acid. Electrochim. Acta, 2008, 53(6), 2729–2736.
https://doi.org/10.1016/j.electacta.2007.10.032

 17.  Lakshmi, D., Akbulut, M., Ivanova-Mitseva, P. K., Whitcombe, M. J., Piletska, E. V., Karim, K., et al. Computational design and preparation of MIPs for atrazine recognition on a conjugated polymer-coated microtiter plate. Ind. Eng. Chem. Res., 2013, 52(39), 13910–13916.
https://doi.org/10.1021/ie302982h

 18.  Li, S., Ge, Y., Piletsky, S. A., and Lunec, J. Molecularly Imprinted Sensors: Overview and Applications. Elsevier, 2012.

 19.  Ayankojo, A. G., Reut, J., Boroznjak, R., Öpik, A., and Syritski, V. Molecularly imprinted poly(meta-phenylenediamine) based QCM sensor for detecting amoxicillin. Sensor. Actuat. B-Chem., 2018, 258, 766–774.

 20.  Dai, J., Zhang, Y., Pan, M. F., Kong, L. J., and Wang, S. Development and application of quartz crystal microbalance sensor based on novel molecularly imprinted sol-gel polymer for rapid detection of histamine in foods. J. Agr. Food Chem., 2014, 62(23), 5269–5274.
https://doi.org/10.1021/jf501092u

 21.  Ebarvia, B. S., Ubando, I. E., and Sevilla, F. B. Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer. Talanta, 2015, 144, 1260–1265.
https://doi.org/10.1016/j.talanta.2015.08.001

 22.  Uludağ, Y., Piletsky, S. A., Turner, A. P. F., and Cooper, M. A. Piezoelectric sensors based on molecular imprinted polymers for detection of low molecular mass analytes. Febs. J., 2007, 274(21), 5471–5480.
https://doi.org/10.1111/j.1742-4658.2007.06079.x

 23.  Mecea, V. M. Is quartz crystal microbalance really a mass sensor? Sensor. Actuat. A-Phys., 2006, 128(2), 270–277.

 24.  Cooper, M. A. Label-free screening of bio-molecular interactions. Anal. Bioanal. Chem., 2003, 377(5), 834–842.
https://doi.org/10.1007/s00216-003-2111-y

 25.  Ertekin, Ö., Öztürk, S., and Öztürk, Z. Z. Label free QCM immunobiosensor for AFB1 detection using monoclonal IgA antibody as recognition element. Sensors (Basel), 2016, 16(8), 1274.
https://doi.org/10.3390/s16081274

 26.  Schneider, H. J., Tianjun, L., and Lomadze, N. Sensitivity increase in molecular recognition by decrease of the sensing particle size and by increase of the receptor binding site – a case with chemomechanical polymers. Chem. Commun., 2004, 0(21), 2436–2437.
https://doi.org/10.1039/b409331c

 27.  Avila, M., Zougagh, M., Escarpa, A., and Rios, A. Molecularly imprinted polymers for selective piezo­electric sensing of small molecules. TrAC Trends Anal. Chem., 2008, 27(1), 54–65.
https://doi.org/10.1016/j.trac.2007.10.009

 28.  Sellergren, B. Imprinted polymers with memory for small molecules, proteins, or crystals. Angew. Chem. Int. Ed. Engl., 2000, 39(6), 1031–1037.
https://doi.org/10.1002/(SICI)1521-3773(20000317)39:6<1031::AID-ANIE1031>3.0.CO;2-F

 29.  Jung, S. H., Jung, J. W., Suh, I. B., Yuk, J. S., Kim, W. J., Choi, E. Y., et al. Analysis of C-reactive protein on amide-linked N-hydroxysuccinimide-dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis. Anal. Chem., 2007, 79(15), 5703–5710.
https://doi.org/10.1021/ac070433l

 30.  Wijaya, E., Lenaerts, C., Maricot, S., Hastanin, J., Habraken, S., Vilcot, J. P., et al. Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionali­zation strategies. Curr. Opin. Solid St. M., 2011, 15(5), 208–224.
https://doi.org/10.1016/j.cossms.2011.05.001

 31.  Tkáč, J., Navrátil, M., Šturdík, E., and Gemeiner, P. Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microb. Tech., 2001, 28(4), 383–388.
https://doi.org/10.1016/S0141-0229(00)00328-8

 32.  Ayankojo, A. G., Tretjakov, A., Reut, J., Boroznjak, R., Öpik, A., Rappich, J., et al. Molecularly imprinted polymer integrated with a surface acoustic wave technique for detection of sulfamethizole. Anal. Chem., 2016, 88(2), 1476–1484.
https://doi.org/10.1021/acs.analchem.5b04735

 33.  Sezgintürk, M. K. and Uygun, Z. O. An impedimetric vascular endothelial growth factor biosensor-based PAMAM/cysteamine-modified gold electrode for monitoring of tumor growth. Anal. Biochem., 2012, 423(2), 277–285.
https://doi.org/10.1016/j.ab.2011.12.049

 34.  Chang, B. Y. and Park, S. M. Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem., 2010, 3, 207–229.
https://doi.org/10.1146/annurev.anchem.012809.102211

 35.  Zhang, L. and Chen, L. Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl. Mater. Inter., 2016, 8(25), 16248–16256.
https://doi.org/10.1021/acsami.6b04381

 36.  Yang, C. C., Yan, X. M., Guo, H., and Fu, G. Q. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links. Biosens. Bioelectron., 2016, 75, 129–135.
https://doi.org/10.1016/j.bios.2015.08.033

 37.  Kadhirvel, P., Azenha, M., Shinde, S., Schillinger, E., Gomes, P., Sellergren, B., and Silva, A. F. Imidazolium-based functional monomers for the imprinting of the anti-inflammatory drug naproxen: comparison of acrylic and sol-gel approaches. J. Chromatogr. A, 2013, 1314, 115–123.
https://doi.org/10.1016/j.chroma.2013.09.015

38.  Li, X. and Husson, S. M. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosens. Bioelectron., 2006, 22(3), 336–348.
https://doi.org/10.1016/j.bios.2006.04.016

Back to Issue