ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Some exploitation properties of wood plastic composites based on polypropylene and birch plywood sanding dust; pp. 117–123
PDF | https://doi.org/10.3176/proc.2018.2.01

Authors
Janis Kajaks, Karlis Kalnins, Ilze Kalnina, Juris Matvejs
Abstract

Numerous researchers are closely connected with the production and studies of partially green biocomposites. Various polymer matrices, mainly polyolefines and natural fibres as reinforcement and their combinations, are used. Some scientists use various by-products of the timber industry in preparing wood plastic composites (WPCs). Our work is focused on the investigation of exploitation properties (tensile and flexural strength and modulus, impact strength, microhardness, and water uptake) of the WPCs based on the birch plywood production by-product sanding dust (PSD) and the polypropylene (PP) matrix. Sufficiently good fluidity of the composite melts was noted. To clarify the composites fracture mechanism SEM studies were used. For modifying the WPCs maleated polypropylene (MAPP) was used as the coupling agent. It was shown that the additions of PSD and MAPP had a positive influence on the exploitation properties of WPCs based on a PP.

References

   1.  Raj, R., Kokta, B., Maldas, D., and Daneault, C. Use of wood fibers in thermoplastics. VII. The effect of the coupling agents in polyethylene–wood fibre composites. J. Appl. Polymer Sci., 1989, 7, 1089–1103.
https://doi.org/10.1002/app.1989.070370420

   2.  Kokta, B., Raj, R., and Daneault, C. Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym.-Plast. Technol., 1989, 28(3), 247–259.
https://doi.org/10.1080/03602558908048598

   3.  Maldas, D. and Kokta, B. Role of coupling agents on performance of wood flour-filled polypropylene composites. Int. J. Polym. Mater., 1994, 27(1–2), 77–88.
https://doi.org/10.1080/00914039408038294

   4.  Nwabunma, D. and Thein Kun, T. (eds). Polyolefin Composites. 3M Company, Wiley-Interscience A. John Wiley and Sons INC Publications, 2007.
https://doi.org/10.1002/9780470199039

   5.  Kajaks, J., Kalnins, K., Uzulis, S., and Matvejs, J. Physical and mechanical properties of composites based on polypropylene and timber industry waste. CEJE, 2014, 4(4), 385–390.

   6.  Kajaks, J., Kalnins, K., Uzulis, S., and Matvejs, J. Some exploitation properties of wood plastic hybrid com­posites (WPHC) based on polypropylene and plywood production waste. Open Engineering, 2015, 5(1), 457–464.

   7.  Kajaks, J., Kalnins, K., Uzulis, S., and Matvejs, J. Some exploitation properties of wood plastic composites based on polypropylene and plywood production waste. Key Eng. Mater., 2017, 721, 48–52.
https://doi.org/10.4028/www.scientific.net/KEM.721.48

   8.  Kajaks, J., Kalnins, K., and Naburgs, R. Wood plastic composites (WPCs) based on high density polyethylene and birch wood plywood production residues. Int. Wood Prod. J., 2017, 8(4), 1–7.

   9.  Ramakrisha, M., Kurmar, V., and Singh, Y. N. Recent development in natural fibre reinforced polypropylene composites. J. Reinf. Plast. Comp., 2009, 28, 1169–1189.
https://doi.org/10.1177/0731684407087759

10.  Sobczak, L., Lang, R. W., and Haider, A. Polypropylene composites with natural fibers and wood – general mechanical properties. Compos. Sci. Technol., 2012, 72(5), 550–557.
https://doi.org/10.1016/j.compscitech.2011.12.013

11.  Bulylina, S., Mactikka, O., and Karki, T. Properties of wood fibre–polypropylene composites: effect of wood fibre source. Appl. Compos. Mater., 2011, 18(2), 101–111.
https://doi.org/10.1007/s10443-010-9134-2

12.  Ashori, A. Study of mechanical properties of wood fiber–polypropylene composites. Adv. Mater. Res., 2010, 123–125, 1195–1198.
https://doi.org/10.4028/www.scientific.net/AMR.123-125.1195

13.  Lou, C.-W., Lin, C.-W., Huang, C.-H., and Li, T.-T. Preliminary study of polypropylene/sawdust green composites. Adv. Mater. Res., 2012, 557–559, 334–337.
https://doi.org/10.4028/www.scientific.net/AMR.557-559.334

14.  Perez, E., Fama, L., and Pardo, S. Tensile and fracture behaviour of PP/wood flour composites. Compos. Part B-Eng., 2012, 43, 2795–2800.
https://doi.org/10.1016/j.compositesb.2012.04.041

15.  Kumar, V., Tyagi, L., and Sinha, S. Wood flour-reinforced plastic composites: a review. Rev. Chem. Eng., 2011, 27(5–6), 252–264.
https://doi.org/10.1515/REVCE.2011.006

16.  Mendez, I. A., Vilaseca, F., and Pelach, M. A. Evaluation of reinforcing effects of ground wood pulp in the preparation of polypropylene based composites coupled with maleated polypropylene. J. Appl. Polymer Sci., 2007, 105, 3588–3596.
https://doi.org/10.1002/app.26426

17.  Ashori, A. and Nourbaksh, A. Reinforced wood/ polypropylene composites: effects of chemical com­position and particle size. Biores. Technol., 2010, 101, 2515–2519.
https://doi.org/10.1016/j.biortech.2009.11.022

18.  Renner, K., Kenyo, C., and Moczo, J. Micromechanical deformation processes in PP/wood composites: particle characteristics, adhesion mechanisms. Compos. Part A-Appl. S., 2010, 41, 1653–1661.

19.  Tabari, H., Nourbakhash, A., and Ashori, A. Effects on nanoclay and coupling agents on physical-mechanical and water absorption properties of saw-dust/polypropylene composites. Polym. Eng. Sci., 2012, 14(1), 123–128.

20.  Thumn, A. and Dickson, A. The influence of fiber length and damage on mechanical performace of polypropylene/ wood pulp composites. Compos. Part A-Appl. S., 2013, 46, 45–62.

21.  Dos Santos, L. P., Trombetta, E., Flores-Sahagun, T. S., and Satanarayana, K. G. Effect of domestic com­patibilizer on performance of polypropylene-saw- dust composites. J. Compos. Mater., 2016, 50, 1353–1365.
https://doi.org/10.1177/0021998315591046

22.  Homkhiew, C., Ratanawilai, T., and Thongruang, W. Composites from recycled polypropylene and rubber- wood flour: effects of composition on mechanical properties. J. Thermoplas. Compos. Mater., 2015, 28(2), 179–194.
https://doi.org/10.1177/0892705712475019

23.  Ahn, S. H. and Kim, D. S. Effects of recycled PP content on the physical properties of wood/PP composites. Polymer Korea, 2014, 38(2), 129–137.
https://doi.org/10.7317/pk.2014.38.2.129

24.  Seo, Y. W. and Kim, D. S. Effects of wood flour size on the physical properties of polypropylene/wood flour composites. Polymer Korea, 2014, 38(3), 327–332.
https://doi.org/10.7317/pk.2014.38.3.327

25.  Soccalingame, L., Bourmand, A., and Rerrin, D. Reprocessing of wood flour reinforced polypropylene composites. Impact of particle size and coupling agent on composite and particle properties. Polymer Degradation and Stability, 2015, 113, 72–85.
https://doi.org/10.1016/j.polymdegradstab.2015.01.020

26.  Pereira, L., Dos Santos, L. P., and Flores-Sahagun, T. S. Effect of processing parameters on the properties of polyethylene-sawdust composites. J. Compos. Mater., 2015, 49, 3727–3740.
https://doi.org/10.1177/0021998314568331

27.  Xie, L., Guveneberg, T., Stenernagel, L., and Ziegmann, G. Influence of particle concentration and type on flow, thermal and mechanical properties of wood-poly­propylene composites. J. Reinf. Plast. Compos., 2010, 29, 1940–1951.
https://doi.org/10.1177/0731684409341763

28. Cui, Y.-H., Wang, X.-X., Xu, Q., and Xia, Z.-Z. Research of moisture absorption behaviour of recycled poly­propylene matrix wood plastic composites. J. Thermoplast. Compos. Mater., 2011, 24, 65–68.
https://doi.org/10.1177/0892705710376470

Back to Issue