Aluminium-doped zinc oxide thin films were deposited from zinc acetylacetonate and aluminium acetylacetonate at various aluminium concentrations and deposition temperatures by ultrasonic spray pyrolysis. The structural and morphological properties and elemental composition of these films were studied by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The gas sensing properties were studied by a two-point probe in O2/99% N2 and H2/97% Ar at operating temperatures of 60, 80, and 100 °C. The films were composed of hexagonal wurtzite-type zinc oxide. The surface morphology of the films depends on the amount of aluminium doping. The hydrogen sensing capability of aluminium-doped zinc oxide thin films deposited from 5 at% Al/Zn solution decreased from 11% to 5.5% as deposition temperature was increased from 280 to 400 °C, but the stability improved by an order of magnitude. The highest sensor response (8%) to 3 vol% H2 in Ar was observed at an operating temperature of 100 °C in the film deposited at a substrate temperature of 400 °C from the solution containing 2 at% Al/Zn. Aluminium doping above 2 at% Al/Zn in the solution reduced film resistance by up to two orders of magnitude and sensor response decreased to 3% at 100 °C. Response times as low as 3 s were observed when detecting hydrogen at operating temperatures 60–100 °C.
1. Gu, H., Wang, Z., and Hu, Y. Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors, 2012, 12, 5517–5550.
https://doi.org/10.3390/s120505517
2. Barsan, N., Koziej, D., and Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B, 2007, 121, 18–35.
https://doi.org/10.1016/j.snb.2006.09.047
3. Minami, T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol., 2005, 20, S35.
https://doi.org/10.1088/0268-1242/20/4/004
4. Ravichandran, K., Jabena Begum, N., Snega, S., and Sakthivel, B. Properties of sprayed aluminum-doped zinc oxide films – a review. Mater. Manuf. Process., 2014, 31, 1411–1423.
https://doi.org/10.1080/10426914.2014.930961
5. Seeber, W. T., Abou-Helal, M. O., Barth, S., Beil, D., Höche, T., Afify, H. H., and Demian, S. E. Transparent semiconducting ZnO:Al thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process., 1999, 2, 45–55.
https://doi.org/10.1016/S1369-8001(99)00007-4
6. Müller, J., Rech, B., Springer, J., and Vanecek, M. TCO and light trapping in silicon thin film solar cells. Sol. Energy, 2004, 77, 917–930.
https://doi.org/10.1016/j.solener.2004.03.015
7. Özgür, Ü., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys., 2005, 98, 041301.
https://doi.org/10.1063/1.1992666
8. Teimoori, F., Khojier, K., and Dehnavi, N. Z. On the dependence of H2 gas sensitivity of ZnO thin films on film thickness. Procedia Mater. Sci., 2015, 11, 474–479.
https://doi.org/10.1016/j.mspro.2015.11.061
9. Hassan, J. J., Mahdi, M. A., Chin, C. W., Abu-Hassan, H., and Hassan, Z. Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. J. Alloys Compd., 2013, 546, 107–111.
https://doi.org/10.1016/j.jallcom.2012.08.040
10. Galstyan, V., Comini, E., Baratto, C., Faglia, G., and Sberveglieri, G. Nanostructured ZnO chemical gas sensors. Ceram. Int., 2015, 41, 14239–14244.
https://doi.org/10.1016/j.ceramint.2015.07.052
11. Huang, B. R., and Lin, J. C. A facile synthesis of ZnO nanotubes and their hydrogen sensing properties. Appl. Surf. Sci., 2013, 280, 945–949.
https://doi.org/10.1016/j.apsusc.2013.05.112
12. Tonezzer, M. and Iannotta, S. H2 sensing properties of two-dimensional zinc oxide nanostructures. Talanta, 2014, 122, 201–208.
https://doi.org/10.1016/j.talanta.2014.01.051
13. Prajapati, C. S., Kushwaha, A., and Sahay, P. P. Effect of Al dopants on the structural, optical and gas sensing properties of spray-deposited ZnO thin films. Mater. Chem. Phys., 2013, 142, 276–285.
https://doi.org/10.1016/j.matchemphys.2013.07.015
14. Pati, S., Maity, A., Banerji, P., and Majumder, S. B. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis. Analyst, 2014, 139, 1796–1800.
https://doi.org/10.1039/c3an02021e
15. Basu, S. and Dutta, A. Room-temperature hydrogen sensors based on ZnO. Mater. Chem. Phys., 1997, 47, 93–96.
https://doi.org/10.1016/S0254-0584(97)80035-1
16. Crossay, A., Buecheler, S., Kranz, L., Perrenoud, J., Fella, C. M., Romanyuk, Y. E., and Tiwari, A. N. Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Sol. Energy Mater. Sol. Cells, 2012, 101, 283–288.
https://doi.org/10.1016/j.solmat.2012.02.008
17. Bang, J. H., Didenko, Y. T., Helmich, R. J., and Suslick, K. S. Nanostructured materials through ultrasonic spray pyrolysis. Material Matters, 2010, 7, 15–20.
18. Krunks, M. and Mellikov, E. Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films, 1995, 270, 33–36.
https://doi.org/10.1016/0040-6090(95)06893-7
19. Dedova, T., Krunks, M., Grossberg, M., Volobujeva, O., and Oja Acik, I. A novel deposition method to grow ZnO nanorods: spray pyrolysis. Superlatt. Microstruct., 2007, 42, 444–450.
https://doi.org/10.1016/j.spmi.2007.04.010
20. Gromyko, I., Krunks, M., Dedova, T., Katerski, A., Klauson, D., and Oja Acik, I. Surface properties of sprayed and electrodeposited ZnO rod layers. Appl. Surf. Sci., 2017, 405, 521–528.
https://doi.org/10.1016/j.apsusc.2017.02.065
21. Kriisa, M., Kärber, E., Krunks, M., Mikli, V., Unt, T., Kukk, M., and Mere, A. Growth and properties of ZnO films on polymeric substrate by spray pyrolysis method. Thin Solid Films, 2014, 555, 87–92.
https://doi.org/10.1016/j.tsf.2013.05.150
22. Navale, S. C., Ravi, V., Mulla, I. S., Gosavi, S. W., and Kulkarni, S. K. Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO. Sens. Actuators B, 2007, 126, 382–386.
https://doi.org/10.1016/j.snb.2007.03.019
23. Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., and Huerta, R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B, 2012, 166, 320–329.
https://doi.org/10.1016/j.snb.2012.01.074
24. Krško, O., Plecenik, T., Moško, M., Haidry, A. A., Ďurina, P., Truchlý, M., et al. Highly sensitive hydrogen semiconductor gas sensor operating at room temperature. Procedia Eng., 2015, 120, 618–622.
https://doi.org/10.1016/j.proeng.2015.08.748
25. Castañeda, L., Silva-González, R., Gracia-Jiménez, J. M., Hernández-Torres, M. E., Avendaño-Alejo, M., Márquez-Beltrán, C., et al. Influence of aluminum concentration and substrate temperature on the physical characteristics of chemically sprayed ZnO: Al thin solid films deposited from zinc pentanedionate and aluminum pentanedionate. Mater. Sci. Semicond. Process., 2010, 13, 80–85.
https://doi.org/10.1016/j.mssp.2010.03.003
26. Galstyan, V., Aroutiounian, V., Arakelyan, V., and Shahnazaryan, G. Investigation of hydrogen sensor made of ZnO thin film. Arm. J. Phys., 2008, 1, 242–246.
27. Badadhe, S. S. and Mulla, I. S. Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis. Sens. Actuators B, 2011, 156, 943–948.
https://doi.org/10.1016/j.snb.2011.03.010