TiO2 is promising material for preparing photocatalysts for water splitting and hydrogen production using solar energy. Due to its large band gap 3.2 eV, anatase cannot absorb sun light effectively in visible light (VIS) spectral part. Percious metal nanopraticles are promising dopants for TiO2 activation as those can decrease band grap of anatase and increase photocatalytic activity significantly. Also the morphology of TiO2 plays an important role in photocatalytic activity. In this research self-organized TiO2 nanotube and nanopore layers were prepared by electrochemical anodization and plasma electrolytic oxidation (PEO) of titanium foil. TiO2 nanofibre layers were prepared by using microwave-assisted synthesis. Chemical deposition method was used to modify obtained substrates with gold nanoparticles. All modified samples showed higher photocatalytic activity than pure TiO2 nanostructures.
1. O’Regan, B. and Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353, 737–740.
https://doi.org/10.1038/353737a0
2. Fujishima, A., Zhang, X., and Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep., 2008, 63, 515–582.
https://doi.org/10.1016/j.surfrep.2008.10.001
3. Fujishima, A., Rao, T. N., and Tryk, D. A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev., 2000, 1, 1–21.
4. Drunka, R., Grabis, J., Jankovica, D., Krumina, A., and Rasmane, D. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO2 nanofibers. IOP Conf. Ser. Mater. Sci. Eng. 2015, 77, 012010, 1–5.
5. Drunka, R., Grabis, J., and Krumina, A. Microwave assisted synthesis, modification with platinum and photocatalytical properties of TiO2 nanofibers. Mater. Sci., 2016, 22, 138–141.
https://doi.org/10.5755/j01.ms.22.1.7353
6. Dikici, T., Yildirim, S., Yurddaskal, M., Erol, M., Yigit, R., Toparli, M., and Celik, E. A comparative study on the photocatalytic activities of microporous and nanoporous TiO2 layers prepared by electrochemical anodization. Surf. Coat. Technol., 2015, 263, 1–7.
https://doi.org/10.1016/j.surfcoat.2014.12.076
7. Erol, M., Dikici, T., Toparli, M., and Celik, E. The effect of anodization parameters on the formation of nanoporous TiO2 layers and their photocatalytic activities. J. Alloys Compd., 2014, 604, 66–72.
https://doi.org/10.1016/j.jallcom.2014.03.105
8. Bayati, M. R., Moshfegh, A. Z., and Golestani-Fard, F. Micro-arc oxidized S‒TiO2 nanoporous layers: Cationic or anionic doping? Mater. Lett., 2010, 64, 2215–2218.
https://doi.org/10.1016/j.matlet.2010.07.010
9. Bayati, M. R., Moshfegh, A. Z., and Golestani-Fard, F. On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Appl. Catal. Gen., 2010, 389, 60–67.
https://doi.org/10.1016/j.apcata.2010.09.003
10. Al‒Azri, Z. H. N., Chen, W.‒T., Chan, A., Jovic, V., Ina, T., Idriss, H., and Waterhouse, G. I. N. The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures. J. Catal., 2015, 329, 355–367.
https://doi.org/10.1016/j.jcat.2015.06.005
11. Banerjee, A. N., Hamnabard, N., and Joo, S. W. A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol–gel derived anatase TiO2 nanoparticles. Ceram. Int., 2016, 42, 12010–12026.
https://doi.org/10.1016/j.ceramint.2016.04.128
12. Stroyuk, O. L., Dzhagan, V. M., Kozytskiy, A. V., Breslavskiy, A. Y., Kuchmiy, S. Y., Villabona, A., and Zahn, D. R. T. Nanocrystalline TiO2/Au films: Photocatalytic deposition of gold nanocrystals and plasmonic enhancement of Raman scattering from titania. Mater. Sci. Semicond. Process., 2015, 37, 3–8.
https://doi.org/10.1016/j.mssp.2014.12.033