ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Novel Pd/CeO2 and Pd-NiO/CeO2 nanocomposites’ catalytic activity in glycerol oxidation processes; pp. 486–492
PDF | https://doi.org/10.3176/proc.2017.4.06

Authors
Elina Sile, Svetlana Chornaja, Vera Serga, Ilze Lulle, Svetlana Zhizhkuna, Konstantin Dubencov, Aija Krumina
Abstract

In this work novel Pd supported on cerium oxide nanocomposites in the liquid phase glycerol oxidation with molecular oxygen was studied. Pd/CeO2 and Pd-NiO/CeO2 composites with different Pd loading were prepared using the extractive-pyrolytic method. In the glycerol oxidation processes it was found that Pd/CeO2 and Pd-NiO/CeO2 composites are catalytically active. Besides, NiO additives can significantly increase Pd/CeO2 catalysts’ activity and selectivity to the main product – glyceric acid. Several glycerol oxidation parameters like NaOH initial concentration, glycerol/Pd molar ratio, oxygen pressure and temperature were varied. The best yield of glyceric acid reached 71–75 mol% with full glycerol conversion.

References

   1. Mallesham, B., Sudarsanam, P., Reddy, B. V. S., and Reddy, B. M. Development of cerium promoted copper-magnesium catalysts for biomass valorization: selective hydro­genolysis of bioglycerol. Appl. Catal. B Environ., 2016, 181, 47–57.
https://doi.org/10.1016/j.apcatb.2015.07.037

   2. Bee, S., Hamid, A., Basiron, N., Yehye, W. A., Sudarsanam, P., and Bhargava, S. K. Nanoscale Pd-based catalysts for selective oxidation of glycerol with molecular oxygen: structure – activity correlations. Polyhedron, 2016, 120, 124–133.
https://doi.org/10.1016/j.poly.2016.07.017

   3. Dou, J., Zhang, B., Liu, H., Hong, J., Yin, S., Huang, Y., and Xu, R. Carbon supported Pt9Sn1 nanoparticles as an efficient nanocatalyst for glycerol oxidation. Appl. Catal. B Environ., 2016, 180, 78–85.
https://doi.org/10.1016/j.apcatb.2015.06.007

   4. Cornaja, S., Dubencovs, K., Kulikova, L., Serga, V., Kampars, V., Zizkuna, S., Stepanova, O., Sproge, E., and Cvetkovs, A. Process for the preparation of lactic acid from glycerol. Pat. EP2606968B1 (20.01.2016).

   5. Painter, R. M., Pearson, D. M., and Waymouth, R. M. Selective catalytic oxidation of glycerol to dihydroxyacetone. Angew. Chemie Int. Ed., 2010, 49, 9456–9459.
https://doi.org/10.1002/anie.201004063

   6. Gil, S., Marchena, M., Fernández, C. M., Sánchez-Silva, L., Romero, A., and Valverde, J. L. Catalytic oxidation of crude glycerol using catalysts based on Au supported on carbonaceous materials. Appl. Catal. A Gen., 2013, 450, 189–203.
https://doi.org/10.1016/j.apcata.2012.10.024

   7. Chornaja, S., Dubencov, K., Kampars, V., Stepanova, O., Zhizhkun, S., Serga, V., and Kulikova, L. Oxidation of glycerol with oxygen in alkaline aqueous solutions in the presence of supported palladium catalysts prepared by the extractive-pyrolytic method. React. Kinet. Mech. Catal., 2013, 108, 341–357.
https://doi.org/10.1007/s11144-012-0516-3

   8. Namdeo, A., Mahajani, S. M., and Suresh, A. K. Palladium catalysed oxidation of glycerol – effect of catalyst support. Mol. Catal. A: Chem., 2016, 421, 45–56.
https://doi.org/10.1016/j.molcata.2016.05.008

   9. Gross, E. and Somorjai, G. A. The impact of electronic charge on catalytic reactivity and selectivity of metal-oxide supported metallic nanoparticles. Top. Catal., 2013, 56, 1049–1058.
https://doi.org/10.1007/s11244-013-0069-3

10. Olmos, C. M., Chinchilla, L. E., Rodrigues, E. G., Delgado, J. J., Hungría, A. B., Blanco, G., Pereira, M. F. R., Orfao, J. J. M., Calvino, J. J., and Chen, X. Synergistic effect of bimetallic Au-Pd supported on ceria-zirconia mixed oxide catalysts for selective oxidation of glycerol. Appl. Catal. B. Environ., 2016, 197, 222–235.
https://doi.org/10.1016/j.apcatb.2016.03.050

11. Pantaleo, G., Parola, V. L., Deganello, F., Singha, R. K., Bal, R., and Venezia, A. M. G. Ni/CeO2 catalysts for methane partial oxidation: synthesis driven structural and catalytic effects. Appl. Catal. B Environ., 2016, 189, 233–241.
https://doi.org/10.1016/j.apcatb.2016.02.064

12. Purushothaman, R. K. P., van Haveren, J., van Es, D. S., Melián-Cabrera, I., Meeldijk, J. D., and Heeres, H. J. An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nano­crystalline CeO2 support. Appl. Catal. B Environ., 2014, 147, 92–100.
https://doi.org/10.1016/j.apcatb.2013.07.068

13. Zaid, S., Skrzyńska, E., Addad, A., Nandi, S., Jalowiecki-Duhamel, L., Girardon, J. S., Capron, M., and Dumeignil, F. Development of silver based catalysts promoted by noble metal M (M = Au, Pd or Pt) for glycerol oxidation in liquid phase. Top. Catal., 2017, 60(15–16), 1072–1081.
https://doi.org/10.1007/s11244-017-0800-6

14. Kaminski, P., Ziolek, M., and van Bokhoven, J. A. Mesoporous cerium–zirconium oxides modified with gold and copper – synthesis, characterization and performance in selective oxidation of glycerol. RSC Adv., 2017, 7, 7801–7819.
https://doi.org/10.1039/C6RA27671G

15. Chinchilla, L. E., Olmos, C. M., Villa, A., Carlsson, A., Prati, L., Chen, X., Blanco, G., Calvino, J. J., and Hungría, A. B. Ru-modified Au catalysts supported on ceria–zirconia for the selective oxidation of glycerol. Catal. Today, 2015, 253, 178–189.
https://doi.org/10.1016/j.cattod.2015.02.030

16. Serga, V., Kulikova, L., Cvetkov, A., and Krumina, A. EPM fine-disperse platinum coating on powder carriers. IOP Conf. Ser. Mater. Sci. Eng., 2012, 38, 12062–12065.
https://doi.org/10.1088/1757-899X/38/1/012062

17. Palcevskis, E., Kulikova, L., Serga, V., Cvetkovs, A., Chornaja, S., Sproge, E., and Dubencovs, K. Catalyst materials based on plasma-processed alumina nano­powder. J. Serbian Chem. Soc., 2012, 77, 1799–1806.
https://doi.org/10.2298/JSC121116147P

18. Serga, V., Cvetkovs, A., Krumina, A., Chornaja, S., Kunakovs, J., and Maiorov, M. Production of CeO2/NiO and CeO2/NiO-Pt nanocomposites by EPM. Int. J. New Technol. Res., 2016, 2, 123–127.

19. Li, Y., Chen, S., Xu, J., Zhang, H., Zhao, Y., Wang, Y., and Liu, Z. Ni promoted Pt and Pd catalysts for glycerol oxidation to lactic acid. Clean – Soil, Air, Water, 2014, 42, 1140–1144.
https://doi.org/10.1002/clen.201300316

20. Sipos, P., Hefter, G., and May, P. Viscosities and densities of highly concentrated aqueous MOH solutions (M+ = Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 ºC. J. Chem. Eng. Data, 2000, 45, 613–617.
https://doi.org/10.1021/je000019h

21. Keresszegi, C., Mallat, T., Grunwaldt, J. D., and Baiker, A. A simple discrimination of the promoter effect in alcohol oxidation and dehydrogenation over platinum and palladium. J. Catal., 2004, 225, 138–146.
https://doi.org/10.1016/j.jcat.2004.04.002

22. Villa, A., Wang, D., Veith, G. M., and Prati, L. Bismuth as a modifier of Au–Pd catalyst: enhancing selectivity in alcohol oxidation by suppressing parallel reaction. J. Catal., 2012, 292, 73–80.
https://doi.org/10.1016/j.jcat.2012.04.021

23. Chornaja, S., Sile, E., Dubencovs, K., Bariss, H., Zhizhkuna, S., Serga, V., and Kampars, V. NiO and CoOx promoted Pt catalysts for glycerol oxidation. Key Eng. Mater., 2017, 721, 76–81.
https://doi.org/10.4028/www.scientific.net/KEM.721.76

 

Back to Issue