ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
TiO2:Sm3+ based luminescent oxygen sensitive probes in LDPE packaging material; pp. 450–454
PDF | https://doi.org/10.3176/proc.2017.4.16

Authors
Taavi Tikk, Tõnis Paara, Marko Eltermann, Andres Krumme, Raivo Jaaniso, Valter Kiisk, Sven Lange
Abstract

In present work it was attempted to prepare luminescent TiO2:Sm3+ microprobes embedded into low density polyethylene (LDPE) films for real-time non-intrusive detection of oxygen contamination in plastic film of food packages with a long term goal of streamlining the quality control mechanisms in food packaging process. The luminescence of TiO2:Sm3+ has previously been reported to be a usable for optical sensing of O2 and other gases [1]. In current work we also show that its thermal stability makes it especially suitable for thermo polymer industry as it can withstand required thermal treatments encountered in different polymer processing stages without losing its ability to function as an O2 probe. Sol–gel-prepared TiO2:Sm3+ microparticles were embedded into LDPE by direct mixing [2] and hot pressing the polymer in molten state. The optical response of the doped films to various O2 ambient concentrations are reported in comparison to pristine TiO2:Sm3+ powder. The shortcomings in the sensor performance due to poor oxide particle size control must be paid attention in the future.

References

   1.  Eltermann, M., Utt, K., Lange, S., and Jaaniso, R. Sm3+ doped TiO2 as optical oxygen sensor material. Opt. Mat. Appl., 2016, 51, 24–30.
https://doi.org/10.1016/j.optmat.2015.11.020

   2.  Mills, A. and Grah, A. Extruded polymer films pigmented with a heterogeneous ion-pair based lumophore for O2 sensing. Analyst, 2013, 138, 6488–6493.
https://doi.org/10.1039/c3an01141k

   3.  Mills, A. Oxygen indicators and intelligent inks for packaging food. Chem. Soc. Rev., 2005, 34, 1003–1011.
https://doi.org/10.1039/b503997p

   4.  Puligundla, P., Jung, J., and Ko, S. Carbon dioxide sensors for intelligent food packaging applications. Food Contr., 2012, 25, 328–333.
https://doi.org/10.1016/j.foodcont.2011.10.043

   5.  Noorunnisa Khanam, P. and AlMaadeed, M. A. Processing and characterization of polyethylenebased composites. Adv. Manuf.: Polym. & Compos. Sci., 2015, 1(2), 63–79.

   6.  Bharathi, J. and Pappayee, N. Titanium dioxide (TiO2) thin film based gas sensors. Chem. Pharm. Sci., 2014, 4, 59–61.

   7.  Barnard, A. S. Modelling of nanoparticles: approaches to morphology and evolution. Rep. Prog. Phys., 2010, 73, 1–52.
https://doi.org/10.1088/0034-4885/73/8/086502

   8.  Reedo, V., Lange, S., Kiisk, V., Lukner, A., Tätte, T., and Sildos, I. Influence of ambient gas on the photo­luminescence of sol–gel derived TiO2:Sm3+ films. Optical materials and applications (Rosental, A., ed.). In Proceeding of SPIE, Vol. 5946. SPIE, Bellingham, 2005, 59460F-1.

   9.  De la Cruz, D., Arévalo, J. C., Torres, G., Bautista Margulis, R. G., Ornelas, C., and Aguilar–Elguézabal, A. TiO2 doped with Sm3+ by sol–gel: synthesis, charac­terization and photocatalytic activity of diuron under solar light. Catal. Today, 2011, 166(1), 152–158.
https://doi.org/10.1016/j.cattod.2010.08.023

10.  Nakano, H., Furuya, S., Fukuda, K., and Yamada, S. Synthesis and luminescence enhancement of Eu3+, Sm3+ co-doped Li1.11Ta0.89Ti0.11O3 phosphor. Mater. Res. Bull., 2014, 60, 766–770.
https://doi.org/10.1016/j.materresbull.2014.09.059

11.  Lange, S., Sildos, I., Kiisk, V., and Aarik, J. Energy transfer in the photoexcitation of Sm3+-implanted TiO2 thin films. Mater. Sci. Eng. B, 2004, 112(1), 87–90.
https://doi.org/10.1016/j.mseb.2004.06.007

 

Back to Issue