ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Fluorescent nanodiamond array deposition on porous anodized aluminum oxide using asperity assisted capillary force assembly; pp. 416–421
PDF | https://doi.org/10.3176/proc.2017.4.15

Authors
Uldis Malinovskis, Andris Berzins, Janis Smits, Florian H. Gahbauer, Ruvin Ferber, Donats Erts, Juris Prikulis
Abstract

Array ordering of nanodiamonds with nitrogen-vacancy centers using porous anodized aluminum oxide (PAAO) templates is studied. Particle sorting and array formation are demonstrated with a polydisperse suspension of irregularly shaped diamonds with 28 nm number mean value diameter. The assembly is governed by a balance of withdrawal speed and evaporation driven particle flux, which is influenced by the asperities of the PAAO surface during the capillary and convective assembly dip-coating process. The resulting structures are dense (50 nm average center separation) isolated (non-touching) nanoparticle arrays with a size distribution that matches the topology of the template surface. The fluorescence signal is detected from arrays with an approximately 1:1 particle/pore filling ratio.

References

 

1. Wort, C. J. H. and Balmer, R. S. Diamond as an electronic material. Mater. Today, 2008, 11, 22–28.
https://doi.org/10.1016/S1369-7021(07)70349-8

2. Albrecht, A., Koplovitz, G., Retzker, A., Jelezko, F., Yochelis, S., Porath, D., et al. Self-assembling hybrid diamond-biological quantum devices. New J. Phys., 2014, 16(9), 093002.
https://doi.org/10.1088/1367-2630/16/9/093002

3. Yu, S. J., Kang, M. W., Chang, H. C., Chen, K. M., and Yu, Y. C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127(50), 17604–17605.
https://doi.org/10.1021/ja0567081

4. Schietinger, S., Barth, M., Aichele, T., and Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett., 2009, 9(4), 1694–1698.
https://doi.org/10.1021/nl900384c

5. Smits, J., Berzins, A., Gahbauer, F. H., Ferber, R., Erglis, K., Cebers, A., et al. Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in diamond. Eur. Phys. J. Appl. Phys., 2016, 73(2), 20701.
https://doi.org/10.1051/epjap/2016150449

6. Mochalin, V. N, Shenderova, O., Ho, D., and Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2011, 7(1), 11–23.
https://doi.org/10.1038/nnano.2011.209

7. Dimitrov, A. S. and Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir, 1996, 12(5), 1303–1311.
https://doi.org/10.1021/la9502251

8. Malaquin, L., Kraus, T., Schmid, H., Delamarche, E., and Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir, 2007, 23(23), 11513–11521.
https://doi.org/10.1021/la700852c

9. Huang, C. H., Lin, H. Y., Tzeng, Y., Fan, C. H., Liu, C. Y., Li, C. Y., et al. Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles. Sens. Actuators A Phys., 2012, 180, 49–54.
https://doi.org/10.1016/j.sna.2012.04.001

10. Baitimirova, M., Pastare, A., Katkevics, J., Viksna, A., Prikulis, J., and Erts, D. Gold nanowire synthesis by semi-immersed nanoporous anodic aluminium oxide templates in potassium dicyanoaurate-hexacyanoferrate electrolyte. Micro Nano Lett., 2014, 9(11), 761–765.
https://doi.org/10.1049/mnl.2014.0489

11. Polyakov, B., Prikulis, J., Grigorjeva, L., Millers, D., Daly, B., Holmes, J. D., et al. Photoconductivity of germanium nanowire arrays incorporated in anodic aluminum oxide. J. Phys. Conf. Ser., 2007, 61(1), 283–287.
https://doi.org/10.1088/1742-6596/61/1/057

12. Masuda, H. and Satoh, M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., 1996, 35 (Part 2, No. 1B), L126–L129.

13. Zhan, Z. and Lei, Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano, 2014, 8(4), 3862–3868.
https://doi.org/10.1021/nn500713h

14. Lee, W. and Park, S. J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev., 2014, 114(15), 7487–7556.
https://doi.org/10.1021/cr500002z

15. Hornyak, G., Kr¨oll, M., Pugin, R., Sawitowski, T., Schmid, G., Bovin, J. O., et al. Gold clusters and colloids in alumina nanotubes. Chem. Eur. J., 1997, 3(12), 1951–1956.
https://doi.org/10.1002/chem.19970031210

16. Hsu, C. and Liu, H. H. Optical behaviours of two dimensional Au nanoparticle arrays within porous anodic alumina. J. Phys. Conf. Ser., 2007, 61, 440–444.
https://doi.org/10.1088/1742-6596/61/1/088

17. Seo, I., Kwon, C. W., Lee, H. H., Kim, Y. S., Kim, K. B., and Yoon, T. S. Completely filling anodic aluminum oxide with maghemite nanoparticles by dip coating and their magnetic properties. Electrochem. Solid State Lett., 2009, 12(9), K59.
https://doi.org/10.1149/1.3154418

18. Park, H., Kim, T. H., Kang, S. W., and Jeong, S. H. Nanoscale reaction vessels: highly ordered nanocrystal arrays inside porous anodic alumina nanowells. Int. J. Electrochem. Sci., 2015, 10, 8447–8453.

19. Gordon, M. J. and Peyrade, D. Separation of colloidal nanoparticles using capillary immersion forces. Appl. Phys. Lett., 2006, 89(5), 053112.
https://doi.org/10.1063/1.2266391

20. Kuemin, C., Cathrein Huckstadt, K., L¨ortscher, E., Rey, A., Decker, A., Spencer, N. D., and Wolf, H. Selective assembly of sub-micrometer polymer particles. Adv. Mater., 2010, 22(25), 2804–2808.
https://doi.org/10.1002/adma.201090086
https://doi.org/10.1002/adma.201000396

21. Virganaviˇcius, D., Juod˙enas, M., Tamuleviˇcius, T., Schift, H., and Tamuleviˇcius, S. Investigation of transient dynamics of capillary assisted particle assembly yield. Appl. Surf. Sci., 2017, 406, 136–143.
https://doi.org/10.1016/j.apsusc.2017.02.100

22. Malinovskis, U., Poplausks, R., Apsite, I., Meija, R., Prikulis, J., Lombardi, F., et al. Ultrathin anodic aluminum oxide membranes for production of dense sub-20 nm nanoparticle arrays. J. Phys. Chem. C., 2014, 118(16), 8685–8690.
https://doi.org/10.1021/jp412689y

23. Malinovskis, U., Berzins, A., Gahbauer, F. H., Ferber, R., Kitenbergs, G., Muiznieks, I., et al. Colloidal nano-particle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly. Surf. Coat. Technol., 2017, 326, 264–269.
https://doi.org/10.1016/j.surfcoat.2017.07.057

24. Li, G. H., Zhang, Y., Wu, Y. C., and Zhang, L. D. Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys. Cond. Matter, 2003, 15(49), 8663–8671.
https://doi.org/10.1088/0953-8984/15/49/034

25. Chang, K., Eichler, A., Rhensius, J., Lorenzelli, L., and Degen, C. L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett., 2017, 17(4), 2367–2373.
https://doi.org/10.1021/acs.nanolett.6b05304

 

Back to Issue