ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Cadmium status in chernozem of the Krasnodar Krai (Russia) after the application of phosphogypsum; pp. 501–515
PDF | https://doi.org/10.3176/proc.2017.4.17

Authors
Abdulmalik Batukaev, Anatoly Endovitsky, Valery Kalinichenko, Nikolai Mischenko, Tatiana Minkina, Saglara Mandzhieva, Svetlana Sushkova, Sirojdin Bakoyev, Vishnu Rajput, Galina Shipkova, Yurii Litvinov
Abstract

The thermodynamic state of Cd in Haplic Chernozem with phosphogypsum for soil reclamation in doses of 10, 20, and 40 t ha–1 was evaluated. The role of chemical equilibrium in soil solutions as a cause of Cd status in soil was shown. Based on a carbonate–calcium equilibrium algorithm, a computer program was developed to calculate the real equilibrium ions forms in the soil solution. The association of ions was calculated by an iteration procedure according to the analytical ion concentration considering ion material balance, linear interpolation of equilibrium constants, the method of ionic pairs, laws of initial concentration preservation, and concentration constants of ion pair dissociation. To characterize the binding of Cd2+ ions in the soil solution the coefficient of heavy metal ions association kas is proposed. The application of phosphogypsum increases the content of the Cd2+ free form in soil by 57.1%. There is no hazard if phosphogypsum from Kovdor phosphate ore is applied for soil reclamation because the Cd2+ content in the ore and phosphogypsum is low, and the small additional quantity of Cd2+ is spread throughout the soil continuum during soil processing at concentrations lower than the clark value.

References

Adams, F. 1971. Ionic concentrations and activities in soil solutions. Soil Sci. Soc. Am. J., 35, 421–426.
https://doi.org/10.2136/sssaj1971.03615995003500030028x

Adriano, D. C. 2001. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer-Verlag, New York–Berlin–Heidelberg.
https://doi.org/10.1007/978-0-387-21510-5

Aleksandrova, A. M. 1979. Physicochemical Methods of Monitoring the Potential Soil Acidity and Ionic Composition of the Liquid Phase of Soils, Author's abstract of the dissertation for the degree of Doctor of Biological Sciences. Moscow (in Russian).

Alloway, B. J. (Ed.). 2013. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Springer, Netherlands.
https://doi.org/10.1007/978-94-007-4470-7

Amakor, X. N., Jacobson, A. R., and Cardon, G. E. 2013. Improving estimates of soil salinity from saturation paste extracts in calcareous soils. Soil Sci. Soc. Am. J., 3, 792–799.
https://doi.org/10.2136/sssaj2012.0235

Amari, T., Ghnaya, T., and Abdelly, C. 2017. Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S. Afr. J. Bot., 111, 99–110.
https://doi.org/10.1016/j.sajb.2017.03.011

Anisimov, V. S., Anisimova, L. N., Frigidova, L. M., Dikarev, D. V., Frigidov, R. A., Kochetkov, I. V., and Sanzharova, N. I. 2015. Evaluation of migration ability of Zn in the soil-plant system. Biogeosystem Technique, 4(2), 153163, http://ejournal19.com (in Russian).

Azouazi, M., Ouahidi, Y., Fakhi, S., Andres, Y., Abbe, J. C., and Benmansour, M. 2001. Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco. J. Environ. Radioact., 54(2), 231–242.
https://doi.org/10.1016/S0265-931X(00)00153-3

Batukaev, A. A., Endovitsky, A. P., Andreev, A. G., Kalinichenko, V. P., Minkina, T. M., Dikaev, Z. S., et al. 2016. Ion association in water solution of soil and vadose zone of chestnut saline solonetz as a driver of terrestrial carbon sink. Solid Earth, 7(2), 415–423.
https://doi.org/10.5194/se-7-415-2016

Caldararu, S., Purves, D. W., and Palmer, P. I. 2014. Phenology as a strategy for carbon optimality: a global model. Biogeo­ciences, 11(3), 763–778.

Casacuberta, N., Masqué, P., Garcia-Orellana, J., Bruach, J. M., Anguita, M., Gasa, J., et al. 2009. Radioactivity contents in dicalcium phosphate and the potential radiological risk to human populations. J. Hazard. Mater., 170, 814–823.
https://doi.org/10.1016/j.jhazmat.2009.05.037

Chaplygin, V. A., Minkina, T. M., Mandzhieva, S. S., Sushkova, S. N., Nazarenko, O. G., and Motuzova, G. V. 2014. Steppe zone vegetation and soil layer pollution by heavy metals under the influence Novocherkassk Power Station emission. Biogeosystem Technique, 1(1), 5057, http://ejournal19.com (in Russian).

Cichy, B., Jaroszek, H., and Paszek, A. 2014. Cadmium in phosphate fertilizers; ecological and economical aspects. Chemik, 68(10), 837–842.

Crusciol, C. A. C., Artigiani, A. C. C. A., Arf, O., Filho, A. C. A. C., Soratto, R. P., Nascente, A. S., and Alvarez, R. C. F. 2016. Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. Catena, 137, 87–99.
https://doi.org/10.1016/j.catena.2015.09.009

Degryse, F., Smolders, E., and Merckx, R. 2006. Labile Cd complexes increase Cd availability to plants. Environ. Sci. Technol., 40(3), 830–836.
https://doi.org/10.1021/es050894t

Derzhavin, L. M. and Bulgakov, D. S. (Eds). 2003. Methodicheskie ukazaniya po provedeniyu kompleksnogo monitoringa plodorodiya pochv zemel' sel'skokhozyastvennogo naznacheniya. [Methodological Guidelines for the Integrated Monitoring of Soil Fertility on Agricultural Lands]. Rosinformagrotekh, Moscow, Russia (in Russian). http://analitlab.ru/metod_pochva (accessed 2017-10-10).

Dutch Target and Intervention Values. 2000. The New Dutch List. http://www.esdat.net/Environmental%20Standards/Dutch/ annexS_I2000Dutch%20Environmental%20Standards.pdf (accessed 2017-10-10).

Enamorado, S., Abril, J. M., Delgado, A., Más, J. L., Polvillo, O., and Quintero, J. M. 2014. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. J. Hazard. Mater., 266, 122–131.
https://doi.org/10.1016/j.jhazmat.2013.12.019

Endovitskii, A. P., Kalinichenko, V. P., Bakoyev, S. Y., Ivanenko, A. A., Sukovatov, V. A., and Radevich, E. V. 2009a. Certificate of the state registration of computer program No 2009612162 “ION-2”. http://www1.fips.ru/wps/portal/Registers/ (in Russian).

Endovitskii, A. P., Kalinichenko, V. P., Il'in, V. B., and Ivanenko, A. A. 2009b. Coefficients of association and activity of cadmium and lead ions in soil solutions. Eurasian Soil Sci., 42(2), 201–208.
https://doi.org/10.1134/S1064229309020112

Endovitsky, A. P., Kalinichenko, V. P., and Minkina, T. M. 2014. State of lead and cadmium in chernozem after making phosphogypsum. Pochvovedenie, 3, 340–350 (in Russian).

Endovitsky, A. P., Minkina, T. M., and Kalinitchenko, V. P. 2015. Thermodynamic status of strontium in chernozem at application of phosphogypsum. Biogeosystem Technique, 6(4), 345–362, http://ejournal19.com

Endovitsky, A. P., Batukaev, A. A., Minkina, T. M., Kalinitchenko, V. P., Mandzhieva, S. S., Sushkova, S. N., et al. 2017. Ions association in soil solution as the cause of lead mobility and availability after application of phosphogypsum to chernozem. J. Geochem. Explor, 182, Part B, 185–192.

Envirolink 73 – HBRC 9 – Soil cadmium. 2006. Report prepared for Hawkes Bay Regional Council. http://www.docs-engine.com/pdf/2/cadmium-report.html (accessed 2017-10-10).

European Commission. 2016. Limits for cadmium in phosphate fertilisers. Brussels. http://ec.europa.eu/transparency/regdoc/rep/ 0102/2016/EN/SWD-2016-64-F1-EN-MAIN-PART-2.PDF (accessed 2017-10-10).

Evans, W., Mathis, J. T., and Cross, J. N. 2014. Calcium carbonate corrosivity in an Alaskan inland sea. Biogeosciences, 11(2), 365–379.
https://doi.org/10.5194/bg-11-365-2014

Gázquez, M. J., Mantero, J., Mosqueda, F., Bolívar, J. P., and García-Tenorio, R. 2014. Radioactive characterization of leachates and efflorescences in the neighbouring areas of a phosphogypsum disposal site as a preliminary step before its restoration. J. Environ. Radioact., 137, 79–87.
https://doi.org/10.1016/j.jenvrad.2014.06.025

Glazko, V. I. and Galzko, T. T. 2015. Conflicts of biosphere and agroecosystems. International Journal of Environmental Problems, 1(1), 4–16 (in Russian).
https://doi.org/10.13187/ijep.2015.1.4

Goswami, M. and Nand, S. 2015. Management of phosphogypsum in India. In Proceedings of the IFA Global Safety Summit, Vancouver, Canada, 23–26 March 2015.

Hideo, M. C. C. and Crusciol, C. A. C. 2016. Long-term effects of lime and phosphogypsum application on tropical no-till soybean–oat–sorghum rotation and soil chemical properties. Eur. J. Agron., 74, 119–132.
https://doi.org/10.1016/j.eja.2015.12.001

Kalinichenko, V. P. 2014. Biogeosystem technique as a base of the new world water strategy. Biogeosystem Technique, 2(2), 100–124, http://ejournal19.com (in Russian).

Kalinichenko, V. P. 2015. Biogeosystem technique as a paradigm of non-waste technology in the biosphere. Biogeosystem Technique, 3(1), 4–28, http://ejournal19.com (in Russian).

Kalinichenko, V. P. 2017. Effective use of phosphogypsum in agriculture. Bulletin of Plant Nutrition, 1, 2.33.

Kalinitchenko, V. P. 2016a. Optimizing the matter flow in biosphere and the climate of the Earth at the stage of technogenesis by methods of biogeosystem technique (problem-analytical review). International Journal of Environmental Problems, 4(2), 99–130.

Kalinitchenko, V. P. 2016b. Status of the Earth’s geochemical cycle in the standard technologies and waste recycling, and the possibilities of its correction by Biogeosystem Technique method (problem-analytical review). Biogeosystem Technique, 8(2), 115–144, http://ejournal19.com (in Russian).

Kalinitchenko, V. P. 2016c. Technologies and technical means for matter recycling into the soil (Review). International Journal of Environmental Problems, 3(1), 58–85.

Kwasniewska, J. 2014. Molecular cytogenetics serves environmental monitoring. In Abstract Book of the 3rd ScienceOne International Conference on Environmental Sciences, 25.

Lapin, A. V. and Lyagushkin, A. P. 2014. The Kovdor apatite-francolite deposit as a prospective source of phosphate ore. Geol. Ore Deposits, 56, 61–80.
https://doi.org/10.1134/S1075701513060056

Maximum permissible concentrations of chemical substances in soil. Russian Health Standards 2.1.7.2042-06, 2006. (in Russian). https://znaytovar.ru/gost/2/GN_217204206_Orientirovochno_d.html (accessed 2017-10-10).

Mays, D. A. and Mortvedt, J. J. 1986. Crop response to soil applications of phosphogypsum. J. Environ. Qual., 15, 78–81.
https://doi.org/10.2134/jeq1986.00472425001500010018x

Michalovicz, L., Müller, M. M. L., Foloni, J. S. S., Kawakami, J., do Nascimento, R., and Kramer, L. F. M. 2014. Soil fertility, nutrition and yield of maize and barley with gypsum application on soil surface in no-till. Rev. Bras. Ciênc. Solo. Section 3 – Soil Use and Management, 38(5), http://dx.doi.org/10.1590/S0100-06832014000500015 (accessed 2017-10-10).
https://doi.org/10.1590/S0100-06832014000500015

Minkin, M. B., Kamynina, L. M., Manikhina, A. A., and Endovitskii, A. P. 1979. The influence of organic matter on calcium carbonate equilibrium in water extracts from solonchak solonetzic soils. Proceedings. North-Caucasus Scientific Center of Higher School, Natural Sciences, 4. 90–94.

Minkin, M. B., Kalinichenko, V. P., Kornienko, V. I., Skuratov, N. S., and Sypko, M. E. 1992. Method for determining the amount of phosphogypsum required for reclamation of alkaline soils. AS USSR №1704070.9.8.1991. Published BI FIPS № 1. 7.1.1992 (in Russian) http://www1.fips.ru/fips_servl/fips/servlet (accessed 2017-10-10).

Minkina, T. M., Endovitskii, A. P., Kalinichenko, V. P., and Fedorov, Y. A. 2012a. Calcium Carbonate Equilibrium in the System Water-soil. Southern Federal University, Rostov-on-Don, Russia (in Russian).

Minkina, T. M., Motusova, G. V., Mandzhieva, S. S., and Nazarenko, O. G. 2012b. Ecological resistance of the soil–plant system to contamination by heavy metals. J. Geochem. Explor., 123, 33–40.
https://doi.org/10.1016/j.gexplo.2012.08.021

Minkina, T. M., Mandzhieva, S. S., Motusova, G. V., Burachevskaya, M. V., Nazarenko, O. G., Sushkova, S. N., and Kızılkaya, R. 2014. Heavy metal compounds in a soil of technogenic zone as indicate of its ecological state. Eurasian J. Soil Sci., 3, 144–151.
https://doi.org/10.18393/ejss.60429

Mischenko, N. A., Gromyko, E. V., Kalinichenko, V. P., Chernenko, V. V., and Larin, S. V. 2009. Ecological and recreational phosphogypsum recycling in chernozem on example of the Krasnodar Territory. Fertility, 6, 25–26 (in Russian).

Motuzova, G. V., Minkina, T. M., Karpova, E. A., Barsova, N. U., and Mandzhieva, S. S. 2014. Soil contamination with heavy metals as a potential and real risk to the environment. J. Geochem. Explor., 144, 241–246. http://dx.doi.org/10.1016/ .gexplo.2014.01.026 (accessed 2017-10-10).

Nisti, M. B., Saueia, C. R., Malheiro, L. H., Groppo, G. H., and Mazzilli, B. P. 2015. Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum. J. Environ. Radioactiv., 144, 120–126.
https://doi.org/10.1016/j.jenvrad.2015.03.013

[NZWWA] New Zealand Water and Wastes Association. 2003. Guidelines for the Safe Application of Biosolids to Land in New Zealand. Vol.1: Guidelines. https://www.waternz.org.nz/Folder?Action=View%20File&Folder_id=101&File=iosolids_guidelines.pdf (accessed 2017-10-10).

PND F 16.1.42-04. 2004. The methodology for measuring the mass fraction of metals and metal oxides in powder soil samples by X-ray fluorescence analysis. Moscow, Russia (in Russian). http://analitlab.ru/metod_pochva (accessed 2017-10-10).

René, R., Simmler, M., Portmann, D., Clucas, L., Schulin, R., and Robinson, B. 2014. Cadmium concentrations in New Zealand pastures: relationships to soil and climate variables. J. Environ. Quality, 43(3), 917–925.
https://doi.org/10.2134/jeq2013.09.0367

Shtiza, A. and Swennen, R. 2011. Appropriate sampling strategy and analytical methodology to address contamination by industry. Part 2. Geochemistry and speciation analysis. Open Geosciences, 3(1), 53–70.
https://doi.org/10.2478/v10085-010-0033-4

Snakin, V. V., Prisyazhnaya, A. A., and Kovács-Láng, E. (Eds). 2001. Soil Liquid Phase Composition. Elsevier Science B.V.

Sokolov, M. S., Glinushkin, A. P., and Toropova, E. Y. 2015. Habitat functions of healthy soil – phyto-sanitary and social aspects. Agrochimia, 8, 81–94 (in Russian).

Sparks, D. (Ed.). 2003. Environmental Soil Chemistry. Academic Press, San Diego C.A., USA. http://dx.doi.org/10.1016/B978-012656446-4/50001-3 (accessed 2017-10-10).
https://doi.org/10.1016/B978-012656446-4/50001-3

Sposito, G. 1989. The Chemistry of Soils. Oxford University Press, New York, Oxford, USA.

Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., and López-Delgado, A. 2009. Environmental impact and management of phosphogypsum. J. Environ. Manage., 90, 2377–2386.
https://doi.org/10.1016/j.jenvman.2009.03.007

Tayibi, H., Choura, M., López, F. A., Alguacil, F. J., and López-Delgado, A. 2012. Environmental Impact and Management of Phosphogypsum. (Review). http://digital.csic.es/bitstream/10261/45241/3/Environmental%20impact%20and%20management% 20of%20phosphogypsum.pdf (accessed 2017-10-10).

Teaf, C. M., Covert, D. J., Teaf, P. A., Page, E., and Starks, M. J. 2010. Arsenic cleanup criteria for soils in the US and abroad: comparing guidelines and understanding inconsistencies. In Proceedings of the Annual International Conference on Soils, Sediments, Water and Energy, Vol. 15 Article 10. http://scholarworks.umass.edu/soilsproceedings/vol15/iss1/10 (accessed 2017-10-10).

Tenno, T., Rikmann, E., Zekker, I., Tenno, T., Daija, L., and Mashirin, A. 2016. Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3–water–gas. Proc. Estonian Acad. Sci., 65, 68–77.
https://doi.org/10.3176/proc.2016.1.07

Tenno, T., Uiga, K., Mashirin, A., Zekker, I., and Rikmann, E. 2017. Modeling closed equilibrium systems of H2O–dissolved CO2–solid CaCO3. J. Phys. Chem. A, 121, 3094–3100.
https://doi.org/10.1021/acs.jpca.7b00237

[US EPA] US Environmental Protection Agency. 2001. Rules and Regulations. Federal Register, 66(4), 1211. https: //www.epa.gov/lead/hazard-standards-lead-paint-dust-and-soil-tsca-section-403 (accessed 2017-10-10).

Visconti, F. and de Paz, J. M. 2012. Prediction of the soil saturated paste extract salinity from extractable ions, cation exchange capacity and anion exclusion. Soil Res., 50, 536–550.
https://doi.org/10.1071/SR12197

Xiong, T., Leveque, T., Shahid, M., Foucault, Y., Mombo, S., and Dumat, C. 2014. Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J. Environ. Quality, 43, 1593–1600.
https://doi.org/10.2134/jeq2013.11.0469

Zykov, D. D., Derevitskaya, V. A., Trostyanskaya, E. B., Chekalin, M. A., Yukel'son I. I., and Yashunskaya, F. O. 1966. Obshchaya khimicheskaya tekhnologiya organicheskikh veshchestv. Khimiya, Moscow (in Russian).

 

Back to Issue