ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Influence of uniaxial pressure on dielectric properties of (1-x)Na0.5Bi0.5TiO3–xSrTiO3 for x = 0.01, 0.04, and 0.1 ceramics; pp. 396–402
PDF | https://doi.org/10.3176/proc.2017.4.20

Authors
Piotr Czaja, Jan Suchanicz, Kamila Kluczewska, Dorota Sitko, Erazm Maria Dutkiewicz, Krzysztof Konieczny, Adrian Węgrzyn, Maija Antonova, Andris Sternberg
Abstract

 

The conventional solid-state sintering was applied to synthesized (1-x)Na0.5Bi0.5TiO3xSrTiO3 (x = 0.01, 0.04, and 0.1) ceramics. Dielectric measurements of these ceramics were taken in the temperature range from 20 to 600 °C, in the frequency range from 1 kHz to 2 MHz and under uniaxial pressure ranging from 10 to 1100 bar. The study of the dielectric behaviour showed that the influence of uniaxial pressure on the investigated properties was considerable. The peaks em gradually decreased and shifted towards lower temperatures with an increase of uniaxial pressure for all samples. The first effect developed with an increase of the strontium ion concentration. Experimental results revealed most interesting properties of the material in the context of its potential applications.

 

References

   1.  Heartling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc., 1999, 82, 797–818.
https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

   2.  Cross, L. E. Ferroelectric materials for electromechanical transducer applications. Mater. Chem. Phys., 1996, 43, 108–115.
https://doi.org/10.1016/0254-0584(95)01617-4

   3.  Zhang, S., Li, F., Jiang, X., Kim, J., Luo, J., and Geng, X. Advantages and challenges of relaxor–PbTiO3 ferro­electric crystals for electroacustic transducers – a review. Prog. Mater. Sci., 2015, 68, 1–66.
https://doi.org/10.1016/j.pmatsci.2014.10.002
https://doi.org/10.1007/s00339-015-9033-3

   4.  Suchanicz, J., Kusz, J., Böhm, H., et al. Structural and dielectric properties of (Na0.5Bi0.5)0.7Ba0.3TiO3 ceramics. J. Eur. Ceram. Soc., 2003, 23, 1559–1564.
https://doi.org/10.1016/S0955-2219(02)00406-5

   5.  Vakhrushev, S. B., Isupov, V. A., Kvyatkowsky, B. E., Okuneva, N. M., Pronin, I. P., Smolensky, G. A., and Syrnikov, P. P. Phase transitions and soft modes in sodium bismuth titanate. Ferroelectrics, 1985, 63, 153–160.
https://doi.org/10.1080/00150198508221396

   6.  Park, S. E. and Chung, S. J. Ferroic phase transitions in (Na0.5Bi0.5)TiO3 crystals. J. Am. Ceram. Soc., 1996, 79, 1290–1296.
https://doi.org/10.1111/j.1151-2916.1996.tb08586.x

   7.  Suchanicz, J. Behaviour of Na0.5Bi0.5TiO3 ceramics in the AC electric field. Ferroelectrics, 1998, 209, 561–568.
https://doi.org/10.1080/00150199808018070

   8.  Barick, B. K., Misra, K. K., Arora, A. K., Choudhary, R. N. P., and Pradhan, D. K. Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D, 2011, 44, 355402.
https://doi.org/10.1088/0022-3727/44/35/355402

   9.  Suchanicz, J., Kruzina, T. V., Pozdeev, V. G., and Popov, A. A. Influence of Ba addition on the dielectric and optic properties of (1 – x)Na0.5Bi0.5TiO3xBaTiO3 (x = 0, 0.025, 0.035 and 0.05) single crystals. Phase Transitions, 2016, 89, 310–316.
https://doi.org/10.1080/01411594.2015.1079322

10.  Jones, G. O. and Thomas, P. A. Investigation of the structure and phase transition in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. B, 2002, 58, 168–178.
https://doi.org/10.1107/S0108768101020845

11.  Lytle, F. W. X-ray diffractometry of low-temperature phase transformations in strontium titanate. J. Appl. Phys., 1964, 35, 2212–2215.
https://doi.org/10.1063/1.1702820

12.  Neville, R. C., Hoeneisen, B., and Mead, C. A. Permittivity of strontium titanate. J. Appl. Phys., 1972, 43, 2124–2131.
https://doi.org/10.1063/1.1661463
https://doi.org/10.1063/1.1660845

13.  Choudhury, B. K., Rao, K. V., and Choudhury, R. N. P. Dielectric properties of SrTiO3 single crystals subjected to high electric fields and later irradiated with X-rays or γ-rays. J. Mater. Sci., 1989, 24, 3469–3474.
https://doi.org/10.1007/BF02385726

14.  Suchanicz, J., Dutkiewicz, E. M., Jeleń, P., Handke, B., Sokołowski, M., Antonova, M., and Sternberg, A. Influence of Sr addition on structural, dielectric and Raman properties of Na0.5Bi0.5TiO3 ceramics. Integr. Ferroelectr., 2016, 173, 59–64.
https://doi.org/10.1080/10584587.2016.1184498

15.  Suchanicz, J., Bovtun, V., Dutkiewicz, E. M., Konieczny, K., Sitko, D., Kluczewska, K., et al. Dielectric, thermal and Raman spectroscopy studies of lead-free (Na0.5Bi0.5)1–xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics. Phase Transitions, 2016, 89(7–8), 856–862.
https://doi.org/10.1080/01411594.2016.1177825

16.  Dutkiewicz, E. M., Suchanicz, J., Bovtun, V., Konieczny, K., Czaja, P., Kluczewska, K., et al. Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1–x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics. Phase Transitions, 2016, 89, 823–828.
https://doi.org/10.1080/01411594.2016.1182167

17.  Dutkiewicz, E. M., Suchanicz, J., Konieczny, K., Czaja, P., Kluczewska, K., Czternatek, H., et al. Electrical transport in lead-free (Na0.5Bi0.5)1–xSrxTiO3 ceramics (x = 0, 0.01 and 0.02). Phase Transitions, 2017, 90, 824–830.
https://doi.org/10.1080/01411594.2016.1277218

18.  Benes, E., Gröschl, M., Burger, W., and Schmid, M. Sensors based on piezoelectric resonators. Sensor. Actuat. A, 1995, 48, 1–5.
https://doi.org/10.1016/0924-4247(95)00846-2

19.  Sitko, D. and Suchanicz, J. Effect of uniaxial stress on the dielectric properties of BaTiO3 + 0.1wt.%Eu2O3 ceramics. Phase Transitions, 2017, 90, 72–77.
https://doi.org/10.1080/01411594.2016.1198963

20.  Suchanicz, J. The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics. Mater. Sci. Eng. B, 1998, 55, 114–118.
https://doi.org/10.1016/S0921-5107(98)00188-3

21.  Suchanicz, J. and Wójcik, K. Effect of external stress on dielectric properties of PbTiO3 single crystal. Mat. Sci. Eng. B, 2003, 104, 31–35.
https://doi.org/10.1016/S0921-5107(03)00263-0

22.  Suchanicz, J., Sitko, D., Kim-Ngan, N.-T. H., and Balogh, A. G. Electric properties of soft PZT ceramics under combined electric and mechanic fields. J. Appl. Phys., 2008, 104, 094106.
https://doi.org/10.1063/1.3010760

23. Konieczny, K. and Śmiga, W. Influence of axial pressure on electric properties of Na1–xLixNbO3 (x = 0.08, 0.1 and 0.2) ceramics. Integr. Ferrolectr., 2016, 173, 65–70.
https://doi.org/10.1080/10584587.2016.1184505

 

Back to Issue