Single-phase ceramic samples of silicate apatites M2Ln8(SiO4)6O2 (M = Mg, Ca, Sr; Ln = Y, La) undoped and doped with Eu3+, Ce3+, or Mn2+ ions were obtained by the high-temperature solid-state reaction technique using precursors synthesized under hydrothermal conditions. The phosphors were characterized by XRD analysis, Raman spectroscopy, and steady-state/time-resolved and site-selective photoluminescence spectroscopy under blue-to-VUV excitation. It is shown that the small-radius Mg2+ ions, which can occupy two types of suitable sites in the apatite structure, strongly influence luminescence properties of apatites, in particular the distribution of Eu3+ ions between these sites. A bright broad-band yellow emission (peaked at 560 nm with t < 1 ms) was obtained from the Mg2La8(SiO4)6O2:Eu apatite after annealing it in a H2(15%)/Ar reducing atmosphere. This emission is due to 5d–4f transitions of Eu2+ and is efficiently excited by near UV-to-blue light (300–450 nm). Silicate apatites co-doped with optimal concentrations of Eu3+/Eu2+ or Eu2+/Mn2+ can be considered as possible single-phase phosphors for application in warm white pc-LEDs.
1. Feldmann, C., Jüstel, T., Ronda, C. R., and Schmidt, P. J. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater., 2003, 13, 511–516.
https://doi.org/10.1002/adfm.200301005
2. Schubert, E. F. and Kim, J. K. Solid-state light sources getting smart. Science, 2005, 308, 1274–1278.
https://doi.org/10.1126/science.1108712
3. Ye, S., Xiao, F., Pan, Y. X., Ma, Y. Y., and Zhang, Q. Y. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mat. Sci. Eng., 2010, R 71, 1–34.
4. Smet, P. F., Parmentier, A. B., and Poelman, D. Selecting conversion phosphors for white light-emitting diodes. J. Electrochem. Soc., 2011, 158, R37–R54.
https://doi.org/10.1149/1.3568524
5. Li, G., Tian, Y., Zhaoa, Y., and Lin, J. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev., 2015, 44, 8688–8713.
https://doi.org/10.1039/C4CS00446A
6. Lin, Y.-C., Karlsson, M., and Bettinelli, M. Inorganic phosphor materials for lighting. Top. Curr. Chem. (Z), 2016, 374, 21.
https://doi.org/10.1007/s41061-016-0023-5
7. Xia, Z. and Liu, Q. Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci., 2016, 84, 59–117.
https://doi.org/10.1016/j.pmatsci.2016.09.007
8. Xiao, F., Xue, Y. N., and Zhang, Q. Y. Y4MgSi3O13:RE3+ (RE = Ce, Tb and Eu) nanophosphors for a full-color display. Physica B, 2010, 405, 4445–4449.
https://doi.org/10.1016/j.physb.2010.08.012
9. Zuev, M. G., Karpov, A. M., and Shkvarin, A. S. Synthesis and spectral characteristics of Sr2Y8(SiO4)6O2: Eu polycrystals. J. Solid State Chem., 2011, 184, 52–58.
https://doi.org/10.1016/j.jssc.2010.10.014
10. Shen, Y., Chen, R., Gurzadyan, G. G., Xu, J., Sun, H., Khor, K. A., and Dong, Z. Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2: Eu2+,Eu3+ phosphor for white LEDs. Opt. Mater., 2012, 34, 1155–1160.
https://doi.org/10.1016/j.optmat.2012.01.020
11. Hsu, C.-H., Das, S., and Lu, C.-H. Color-tunable, single phased MgY4Si3O13: Ce3+, Mn2+ phosphors with efficient energy transfer for white-light-emitting diodes. J. Electrochem. Soc., 2012, 159, J193–J199.
https://doi.org/10.1149/2.077205jes
12. Sokolnicki, J. and Zych, E. Synthesis and spectroscopic investigations of Sr2Y8(SiO4)6O2: Eu2+,Eu3+ phosphor for white LEDs. J. Lumin., 2015, 158, 65–69.
https://doi.org/10.1016/j.jlumin.2014.09.033
13. Yuan, S., Wang, L., Cui, Z., Yang, Y., Zeng, H., Cheviré, F., et al. Color-tunable Eu2+ activated oxysilicate phosphors with oxyapatite structure. J. Mater. Sci. & Appl., 2015, 1, 33–37.
14. Dobrowolska, A., Karsu, E. C., Bos, A. J. J., and Dorenbos, P. Spectroscopy, thermoluminescence and afterglow studies of CaLa4(SiO4)3O: Ln (Ln=Ce, Nd, Eu, Tb, Dy). J. Lumin., 2015, 160, 321–327.
https://doi.org/10.1016/j.jlumin.2014.12.038
15. Leu, L.-C., Thomas, S., Sebastian, M. T., Zdzieszynski, S., Misture, S., and Ubic, R. Crystal structure of apatite type rare-earth silicate (Sr2RE2)(RE6)(SiO4)6O2 (RE=La, Pr, Tb, Tm, and Y). J. Am. Ceram. Soc., 2011, 94, 2625–2632.
https://doi.org/10.1111/j.1551-2916.2011.04388.x
16. Blasse, G. Influence of local charge compensation on site occupation and luminescence of apatites. J. Solid State Chem., 1975, 14, 181–184.
https://doi.org/10.1016/0022-4596(75)90009-2
17. Jang, K. H., Khaidukov, N. M., Tuyen, V. P., Kim, S. I., Yu, Y. M., and Seo, H. J. Luminescence properties and crystallographic sites for Eu3+ ions in fluorthalenite Y3Si3O10F. J. Alloys Compd., 2012, 536, 47–51.
https://doi.org/10.1016/j.jallcom.2012.05.010
18. Omelkov, S. I., Kiisk, V., Sildos, I., Kirm, M., Nagirnyi, V., Pustovarov, V. A., et al. The luminescence microspectroscopy of Pr3+-doped LiBaAlF6 and Ba3Al2F12 crystals. Radiat. Meas., 2013, 56, 49–53.
https://doi.org/10.1016/j.radmeas.2013.01.030
19. Romet, I., Buryi, M., Corradi, G., Feldbach, E., Laguta, V., Tichy-Racs, E., and Nagirnyi, V. Recombination luminescence and EPR of Mn doped Li2B4O7 single crystals. Opt. Mater., 2017, 70, 184–193.
https://doi.org/10.1016/j.optmat.2017.05.032
20. Nagirnyi, V., Kotlov, A., Jönsson, L., Kirm, M., and Lushchik, A. Emission decay kinetics in a CaWO4:Bi crystal. Nucl. Instrum. Methods A, 2005, 537, 61–65.
https://doi.org/10.1016/j.nima.2004.07.235
21. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 1976, 32, 751–767.
https://doi.org/10.1107/S0567739476001551
22. Jansen, T., Jüstel, T., Kirm, M., Mägi, H., Nagirnyi, V., Tõldsepp, E., et al. Site selective, time and temperature dependent spectroscopy of Eu3+ doped apatites (Mg,Ca,Sr)2Y8Si6O26. J. Lumin., 2017, 186, 205–211.
https://doi.org/10.1016/j.jlumin.2017.02.004
23. Gupta, S. K., Mohapatra, M., Kaity, S., Natarajan, V., and Godbole, S. V. Structure and site selective luminescence of sol–gel derived Eu: Sr2SiO4. J. Lumin., 2012, 132, 1329–1338.
https://doi.org/10.1016/j.jlumin.2012.01.011
24. Ternane, R., Ferid, M., Panczer, G., Trabelsi-Ayadi, M., and Boulon, G. Site-selective spectroscopy of Eu3+-doped orthorhombic lanthanum and monoclinic yttrium polyphosphates. Opt. Mater., 2005, 27, 1832–1838.
https://doi.org/10.1016/j.optmat.2004.11.005
25. Wright, A. O., Seltzer, M. D., Gruber, J. B., and Chai, B. H. T. Site-selective spectroscopy and determination of energy levels in Eu3+-doped strontium fluorophosphate. J. Appl. Phys., 1995, 78, 2456.
https://doi.org/10.1063/1.360099
26. Wu, L., Tian, X., Deng, K., Liu, G., and Yin, M. Site selective spectroscopic study of an efficient red-emitting phosphor Y2MoO6: Eu. Opt. Mater., 2015, 45, 28–31.
https://doi.org/10.1016/j.optmat.2015.02.034
27. Fiaczyk, K. and Zych, E. On peculiarities of Eu3+ and Eu2+ luminescence in Sr2GeO4 host. RSC Advances, 2016, 6, 91836–91845.
https://doi.org/10.1039/C6RA18090F
28. Khaidukov, N. M., Kirm, M., Feldbach, E., Mägi, H., Nagirnyi, V., Tõldsepp, E., et al. Luminescence properties of silicate apatite phosphors M2La8Si6O26:Eu (M = Mg, Ca, Sr). J. Lumin., 2017, 191, Part A, 51–55.
29. Orera, A., Kendrick, E., Apperley, D. C., Orera, V. M., and Slater, P. R. Effect of oxygen content on the 29Si NMR, Raman spectra and oxide ion conductivity of the apatite series, La8+xSr2-x(SiO4)6O2+x/2. Dalton Trans., 2008, 39, 5296–5301.
https://doi.org/10.1039/b809062a