Hydrophobic silica aerogel powder and hollow glass microspheres (HGM) were used as fillers for an epoxy adhesive to improve its thermal insulator properties. At 50 wt% of HGM content, the thermal conductivity of the HGM/epoxy composite decreased from 0.182 W/m·K to 0.104 W/m·K. The aerogel/epoxy composite, on the contrary, showed a slight increase in its thermal conductivity, most probably due to the filling of aerogel pores with the epoxy adhesive. Furthermore, it was shown that adhesion values of epoxy composites increase with the addition of aerogel and decrease when HGM was used as the filler material. Realistic numerical finite element method simulations revealed an increase in thermal isolation properties for both HGM/epoxy and aerogel/epoxy composites.
1. Baetens, R., Jelle, B. P., and Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energ. Mat. Sol. C., 2010, 94, 87–105.
https://doi.org/10.1016/j.solmat.2009.08.021
2. Buratti, C. and Moretti, E. Glazing systems with silica aerogel for energy savings in buildings. Appl. Energ., 2012, 98, 396–403.
https://doi.org/10.1016/j.apenergy.2012.03.062
3. Cuce, E. and Cuce, P. M. Vacuum glazing for highly insulating windows: recent developments and future prospects. Renew. Sust. Energ. Rev., 2016, 54, 1345–1357.
https://doi.org/10.1016/j.rser.2015.10.134
4. Ge, D., Yang, L., Li, Y., and Zhao, J. Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite. J. Non-Cryst. Solids, 2009, 355, 2610–2615.
https://doi.org/10.1016/j.jnoncrysol.2009.09.017
5. Zhu, B., Ma, J., Wang, J., Wu, J., and Peng, D. Thermal, dielectric and compressive properties of hollow glass microsphere filled epoxy-matrix composite. J. Reinf. Plast. Comp., 2012, 31, 1311–1326.
https://doi.org/10.1177/0731684412452918
6. Kim, G. S. and Hyun, S. H. Effect of mixing on thermal and mechanical properties of aerogel-PVB composites. J. Mater. Sci., 2003, 38, 1961–1966.
https://doi.org/10.1023/A:1023560601911
https://doi.org/10.1023/A:1022812427677
https://doi.org/10.1023/A:1022890611264
https://doi.org/10.1023/A:1023579708755
https://doi.org/10.1023/A:1024429828872
7. Kim, S. Y., Noh, Y. J., Lim, J., and You, N.-H. Silica aerogel/polyimide composites with preserved aerogel pores using multi-step curing. Macromol. Res., 2014, 22, 108–111.
https://doi.org/10.1007/s13233-014-2006-0
8. Kim, H. M., Noh, Y. J., Yu, J., Kim, S. Y., and Youn, J. R. Silica aerogel/polyvinyl alcohol (PVA) insulation composite with preserved pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution. Composites: Part A, 2015, 75, 39–45.
https://doi.org/10.1016/j.compositesa.2015.04.014
9. Kim, H. M., Kim, H. S., Kim, S. Y., and Youn, J. R. Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity. E-Polymers, 2015, 15, 111–117.
https://doi.org/10.1515/epoly-2014-0165
10. Du, A., Zhou, B., Li, Y., Li, X., Ye, J., Li, L., et al. Aerogel: a potential three-dimensional nanoporous filler for resin. J. Reinf. Plast. Comp., 2011, 30, 912–921.
https://doi.org/10.1177/0731684411407948
11. Hsu, C.-C., Chang, K.-C., Huang, T.-C., Yeh, L.-C., Yeh, W.-T., Ji, W.-F., et al. Preparation and studies on properties of porous epoxy composites containing microscale hollow epoxy spheres. Micropor. Mesopor. Mat., 2014, 198, 15–21.
https://doi.org/10.1016/j.micromeso.2014.06.013
12. Liang, J. Z. and Li, F. H. Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites. Polym. Test., 2006, 25, 527–531.
https://doi.org/10.1016/j.polymertesting.2006.02.007
13. Swetha, C. and Kumar, R. Quasi-static uni-axial compression behavior of hollow glass microsphere/epoxy based syntactic foams. Mater. Design, 2011, 32, 4152–4163.
https://doi.org/10.1016/j.matdes.2011.04.058
14. Yung, K. C., Zhu, B. L., Yue, T. M., and Xie, C. S. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol., 2009, 69, 260–264.
https://doi.org/10.1016/j.compscitech.2008.10.014
15. Trofimov, A., Pleshkov, L., and Back, H. Hollow glass microspheres for high strength composite cores. Reinforced Plastics, 2006, 50, 44–46, 48–50.
https://doi.org/10.1016/S0034-3617(06)71074-8
16. Gupta, N. and Ricci, W. Processing and compressive properties of aerogel/epoxy composites. J. Mater. Process. Tech., 2008, 198, 178–182.
https://doi.org/10.1016/j.jmatprotec.2007.06.084
17. Zhao, J., Ge, D., Zhang, S., and Wei, X. Studies on thermal property of silica aerogel/epoxy composite. Mater. Sci. Forum, 2007, 546–549, 1581–1584.
https://doi.org/10.4028/www.scientific.net/MSF.546-549.1581
18. Raju, T., Ding, Y., He, Y., Yang, L., Paula, M., Yang, W., et al. Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer, 2008, 49, 278–294.
https://doi.org/10.1016/j.polymer.2007.11.030
19. Pena, G., Eceiza, A., Valea, A., Remiro, P., Oyanguren, P., and Mondragon, I. Control of morphologies and mechanical properties of thermoplastic-modified epoxy matrices by addition of a second thermoplastic. Polym. Int., 2003, 52, 1444–1453.
https://doi.org/10.1002/pi.1209
20. Balasubramanya, P. C. and Natarajan, K. Mechanical and morphological studies of modified epoxy resin matrix for composite applications. IJETAE, 2014, 4, 281–288.
21. International Organization for Standardization. Thermal insulation – Determination of steady-state thermal resistance and related properties – Heat flow meter apparatus. ISO 8301:1991.