We compared different computational methods (quantum chemical and DFT) for calculations of binding energies of 8- and 9-coordinated lanthanoid–aqua complexes. We used nine computational methods and compared the results with those obtained by the CCSD(T) method. All the nine methods provided relatively similar results and calculated energies correlated very well with the CCSD(T) obtained energies for complexes of this type. The comparison of basis sets revealed that combination of Dolg’s (5s5p4d)/[4s4p3d] + 2s1p1d basis set for lanthanoids and the cc-pvdz basis set for non-lanthanoids can be suggested as optimal for further studies of lanthanoids cation complexation.
1. Di Bernardo, P., Melchior, A., Tolazzi, M., and Zanonato, P. L. Thermodynamics of lanthanide(III) complexation in non-aqueous solvents. Coord. Chem. Rev., 2012, 256, 328–351.
https://doi.org/10.1016/j.ccr.2011.07.010
https://doi.org/10.1016/j.ccr.2012.01.003
2. Dutra, J. D. L., Gimenez, I. F., da Costa, N. B., Jr., and Freire, R. O. Theoretical design of highly luminescent europium (III) complexes: a factorial study. J. Photoch. Photobio. A, 2011, 217, 389–394.
https://doi.org/10.1016/j.jphotochem.2010.11.011
3. Rard, J. A. Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chem. Rev., 1985, 85, 555–582.
https://doi.org/10.1021/cr00070a003
https://doi.org/10.1021/cr00065a001
4. Zeimentz, P. M., Arndt, S., Elvidge, B. R., and Okuda, J. Cationic organometallic complexes of scandium, yttrium, and the lanthanoids. Chem. Rev., 2006, 106, 2404–2433.
https://doi.org/10.1021/cr050574s
5. Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev., 2009, 109, 4283–4374.
https://doi.org/10.1021/cr8003983
6. D'Angelo, P. and Spezia, R. Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. Chem. Eur. J., 2012, 18, 11162–11178.
https://doi.org/10.1002/chem.201200572
7. Ricca, A. and Bauschlicher, C. W., Jr. Ab initio study of Eu3+–L (L = H2O, H2S, NH2CH3, S(CH3)2, imidazole) complexes. Chem. Phys. Lett., 2002, 366, 623–627.
https://doi.org/10.1016/S0009-2614(02)01627-5
8. Freire, R. O., Rocha, G. B., Albuquerque, R. Q., and Simas, A. M. Efficacy of the semiempirical sparkle model as compared to ECP ab-initio calculations for the prediction of ligand field parameters of europium(III) complexes. J. Lumin., 2005, 111, 81–87.
https://doi.org/10.1016/j.jlumin.2004.07.001
9. Freire, R. O., Mesquita, M. E., dos Santos, M. A. C., and da Costa, N. B., Jr. Sparkle model and photophysical studies of Europium BiqO2-cryptate. Chem. Phys. Lett., 2007, 442, 488–491.
https://doi.org/10.1016/j.cplett.2007.06.010
10. Dolg, M., Stoll, H., Savin, A., and Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta, 1989, 75, 173–194.
https://doi.org/10.1007/BF00528565
11. Albuquerque, R. Q., Da Costa, N. B., and Freire, R. O. Design of new highly luminescent Tb3+ complexes using theoretical combinatorial chemistry. J. Lumin., 2011, 131, 2487–2491.
https://doi.org/10.1016/j.jlumin.2011.06.013
12. Rawat, N., Bhattacharyya, A., Tomar, B. S., Ghanty, T. K., and Manchanda, V. K. Thermodynamics of U(VI) and Eu(III) complexation by unsaturated carboxylates. Thermochim. Acta, 2011, 518, 111–118.
https://doi.org/10.1016/j.tca.2011.02.018
13. Terrier, C., Vitorge, P., Gaigeot, M.-P., Spezia, R., and Vuilleumier, R. Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La3+. J. Chem. Phys., 2010, 133, 044509-10.
https://doi.org/10.1063/1.3460813
14. Zhang, J., Heinz, N., and Dolg, M. Understanding lanthanoid(III) hydration structure and kinetics by insights from energies and wave functions. Inorg. Chem., 2014, 53, 7700–7708.
https://doi.org/10.1021/ic500991x
15. Grimme, S. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys., 2003, 118, 9095–9102.
https://doi.org/10.1063/1.1569242
16. Purvis, G. D. and Bartlett, R. J. A full coupled-cluster singles and doubles model – the inclusion of disconnected triples. J. Chem. Phys., 1982, 76, 1910–1918.
https://doi.org/10.1063/1.443164
17. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci., 2012, 2, 73–78.
https://doi.org/10.1002/wcms.81
18. Raghavachari, K., Trucks, G. W., Pople, J. A., and Headgordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett., 1989, 157, 479–483.
https://doi.org/10.1016/S0009-2614(89)87395-6
19. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098–3100.
https://doi.org/10.1103/PhysRevA.38.3098
20. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986, 33, 8822–8824.
https://doi.org/10.1103/PhysRevB.33.8800
https://doi.org/10.1103/PhysRevB.33.8822
21. Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132, 154104–154119.
https://doi.org/10.1063/1.3382344
22. Lee, C. T., Yang, W. T., and Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785–789.
https://doi.org/10.1103/PhysRevB.37.785
23. Stephens, P. J., Devlin, F. J., Chabalowski, C. F., and Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98, 11623–11627.
https://doi.org/10.1021/j100096a001
24. Perdew, J. P., Burke, K., and Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865–3868.
https://doi.org/10.1103/PhysRevLett.77.3865
25. Perdew, J P., Emzerhof, M., and Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys., 1996, 105, 9982–9985.
https://doi.org/10.1063/1.472933
26. Adamo, C. and Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys., 1999, 110, 6158–6170.
https://doi.org/10.1063/1.478522
27. Tao, J. M., Perdew, J. P., Staroverov, V. N., and Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 2003, 91, 146401–146404.
https://doi.org/10.1103/PhysRevLett.91.146401
28. Headgordon, M., Pople, J. A., and Frisch, M. J. MP2 energy evaluation by direct methods. Chem. Phys. Lett., 1988, 153(6), 503–506.
https://doi.org/10.1016/0009-2614(88)85250-3
29. Møller, C. and Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev., 1934, 46, 618–622.
https://doi.org/10.1103/PhysRev.46.618
30. Dolg, M., Stoll, H., and Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys., 1989, 90, 1730–1734.
https://doi.org/10.1063/1.456066
31. Cao, X. Y. and Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. THEOCHEM, 2002, 581, 139–147.
https://doi.org/10.1016/S0166-1280(01)00751-5
32. Schaefer, A., Horn, H., and Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., 1992, 97, 2571–2577.
https://doi.org/10.1063/1.463096
33. Dolg, M., Stoll, H., and Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta, 1993, 85, 441–450.
https://doi.org/10.1007/BF01112983
34. Yang, J. and Dolg, M. Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor. Chem. Acc., 2005, 113, 212–224.
https://doi.org/10.1007/s00214-005-0629-0
35. Weigand, A., Cao, X. Y., Yang, J., and Dolg, M. Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides. Theor. Chem. Acc., 2010, 126, 117–127.
https://doi.org/10.1007/s00214-009-0584-2
36. Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem.Phys., 1989, 90, 1007–1023.
https://doi.org/10.1063/1.456153
https://doi.org/10.1063/1.462569