ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Changes in particulate organic matter passing through a large shallow lowland lake; pp. 93–105
PDF | https://doi.org/10.3176/proc.2018.1.05

Authors
Kai Piirsoo, Alo Laas, Pille Meinson, Peeter Nõges, Peeter Pall, Malle Viik, Sirje Vilbaste, Tiina Nõges
Abstract

Different sources of particulate organic matter (POM) as well as its composition affect the biological food web and hence the self-purification potential and water quality of rivers. We studied the effect of a large shallow lake on the POM pool of the water passing through it. Over four years, we analysed monthly the amount and composition of POM and a set of environmental variables in the inflows and in the outflow of Lake Võrtsjärv (Estonia). In the inflows, the live pool of POM consisted of phytoplankton – small crypto-, dino-, and chlorophytes. The concentration of chlorophyll a (Chl a), as a proxy of phytoplankton biomass, was positively correlated with temperature and total phosphorus and negatively with dissolved silica, total nitrogen, and discharge. In the outflow, the share of the live component of POM was much larger than in the inflows but was also dominated by phytoplankton represented by grazing resistant filamentous cyanobacteria. Chl a was positively correlated with total phosphorus, temperature, pH, and precipitation, and negatively with dissolved silica, total nitrogen, and discharge in the outflow. The different amounts, composition, and seasonal dynamics of POM in the inflows and in the outflow have potentially substantial impacts on the food web with a predominating classical pathway in the inflows versus a detrital pathway in the outflow.

References

APHA. 1989. Standard Methods for the Examination of Water and Wastewater. 17th ed. American Public Health Association, Washington, DC.

Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., et al. 2011. Riverine coupling of biochemical cycles between land, ocean, and atmosphere. Front. Ecol. Environ., 9, 53–60.
https://doi.org/10.1890/100014

Barth, J. A. C., Veizer, J., and Mayer, B. 1998. Origin of particulate organic carbon in the upper St. Lawrence: isotopic constraints. Earth Planet Sci. Lett., 162, 111–121.
https://doi.org/10.1016/S0012-821X(98)00160-5

Basu, B. K. and Pick, F. R. 1997. Phytoplankton and zooplankton development in a lowland, temperate river. J. Plankton Res., 19, 237–253.
https://doi.org/10.1093/plankt/19.2.237

Bianchi, T. S., Wysocki, L. A., Stewart, M., Filley, T. R., and McKee, B. A. 2007. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries. Geochim. Cosmochim. Ac., 71, 4425–4437.
https://doi.org/10.1016/j.gca.2007.07.011

Boers, P. C. M. and Boon, J. J. 1988. Unmasking the particulate organic matter in a lake ecosystem: origin and fate of POM in the shallow eutrophic Loosdrecht Lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol., 31, 27–34.

Brooks, P. D., Haas, P. A., and Huth, A. K. 2007. Seasonal variability in the concentration and flux of organic matter and inorganic nitrogen in a semiarid catchment, San Pedro River, Arizona. J. Geophys. Res., 112, G03S04.
https://doi.org/10.1029/2006JG000275
https://doi.org/10.1029/2006JG000262

Bukaveckas, P. A., MacDonald, A., Aufdenkampe, A., Chick, J. H., Havel, J. E., Schultz, R., et al. 2011. Phytoplankton abundance and contributions to suspended particulate matter in the Ohio, Upper Mississippi and Missouri Rivers. Aquat. Sci., 73, 419–436.
https://doi.org/10.1007/s00027-011-0190-y

Cai, Y., Guo, L., and Douglas, T. A. 2008. Temporal variations in organic carbon species and fluxes from the Chena River, Alaska. Limnol. Oceanogr., 53, 1408–1419.
https://doi.org/10.4319/lo.2008.53.4.1408

Caroni, R., Free, G., Visconti, A., and Manca, M. 2012. Phytoplankton functional traits and seston stabile isotopes signature: a functional-based approach in a deep, sub­alpine lake, Lake Maggiore (N. Italy). J. Limnol., 71, 84–94.
https://doi.org/10.4081/jlimnol.2012.e8

Chen, F. and Jia, G. 2009. Spatial and seasonal variations in ð13C and ð15N of particulate organic matter in a dam-controlled subtropical river. River Res. Appl., 25, 1169–1176.
https://doi.org/10.1002/rra.1225

Cremona, F., Kõiv, T., Nõges, P., Pall, P., Rõõm, E-I., Feldmann, T., et al. 2014a. Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia, 731, 109–123.
https://doi.org/10.1007/s10750-013-1686-3

Cremona, F., Timm, H., Agasild, H., Tõnno, I., Feldmann, T., Jones, R. I., and Nõges, T. 2014b. Benthic foodweb structure in a large shallow lake studied by stable isotope analysis. Freshwater Sci., 33, 885–894.
https://doi.org/10.1086/677540

Dawson, J. J. C., Billet, M. F., Hope, D., Palmer, S. M., and Deacon, C. M. 2004. Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry, 70, 71–92.
https://doi.org/10.1023/B:BIOG.0000049337.66150.f1

Dawson, J. J. C., Adhikari, Y. R., Soulsby, C., and Stutter, M. I. 2012. The biogeochemical reactivity of suspended particulate matter at nested sites in the Dee basin, NE Scotland. Sci. Total Environ., 434, 159–170.
https://doi.org/10.1016/j.scitotenv.2011.08.048

Dell Inc. 2015. Dell Statistics (data analysis software system) Ver. 12. Software.dell.com.

Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., et al. 2006. The global abundance and size distribution of lakes, ponds, and impound­ments. Limnol. Oceanogr., 51, 2388–2397.
https://doi.org/10.4319/lo.2006.51.5.2388

Drummond, J. D., Aubeneau, A. F., and Packman, A. I. 2014. Stochastic modeling of fine particulate organic carbon dynamics in rivers. Water Resour. Res., 50, 4341–4356.
https://doi.org/10.1002/2013WR014665

Edler, L. 1979. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll. Baltic Mar. Biol. Public. 5.

Eipre, T. 1981. Water Supply of the Pandivere Karst Area, Estonia. Leningrad (in Russian).

EN 15204. 2006. Water Quality – Guidance Standard on the Enumeration of Phytoplankton Using Inverted Microscopy (Utermöhl technique). European Standardization Committee (CEN). Brussels, Belgium.

Etcheber, H., Taillez, A., Abril, G., Garnier, J., Servais, P., Moatar, F., and Commarieu, M-V. 2007. Particulate organic carbon in the estuarine turbidity maxima of the Gironde, Loire and Seine estuaries: origin and lability. Hydrobiologia, 588, 245–259.
https://doi.org/10.1007/s10750-007-0667-9

Everbecq, E., Gosselain, V., Viroux, L., and Descy, J-P. 2001. Potamon: a dynamic model for predicting phytoplankton composition and biomass in lowland rivers. Water Res., 35, 901–912.
https://doi.org/10.1016/S0043-1354(00)00360-2

Ford, W. I. and Fox, J. F. 2014. Model of particulate organic carbon transport in an agriculturally impacted stream. Hydrol. Process., 28, 662–675.
https://doi.org/10.1002/hyp.9569

Gebhardt, A. C., Gaye-Haake, B., Unger, D., Lahajnar, N., and Ittekkot, V. 2004. Recent particulate organic carbon and total suspended matter fluxes from the Ob and Yenisei Rivers into the Kara Sea (Siberia). Mar. Geol., 207, 225–245.
https://doi.org/10.1016/j.margeo.2004.03.010

Grasshoff, K., Kremling, K., and Ehrhardt, M. G. 1999. Methods of Seawater Analysis. 3rd ed. VCH Publishers.
https://doi.org/10.1002/9783527613984

Harmelin-Vivien, M., Loizeau, V., Mellon, C., Beker, B., Arlhac, D., Bodiguel, X., et al. 2008. Comparison of C and N stable isotope ratios between surface particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Cont. Shelf Res., 28, 1911–1919.
https://doi.org/10.1016/j.csr.2008.03.002

Hein, T., Baranyi, C., Herndl, G. J., Wanek, W., and Schiemer, F. 2003. Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshwater Biol., 48, 220–232.
https://doi.org/10.1046/j.1365-2427.2003.00981.x

Hélie, J-F. and Hillaire-Marcel, C. 2006. Sources of particulate and dissolved organic carbon in the St. Lawrence River: isotopic approach. Hydrol. Proccess., 20, 1945–1959.
https://doi.org/10.1002/hyp.5962

Hirsch, R. M. and Slack, J. R. 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20, 727–732.
https://doi.org/10.1029/WR020i006p00727

Hirsch, R. M., Slack, J. R., and Smith, R. A. 1982. Techniques of trend analysis for monthly water quality analysis. Water Resour. Res., 18, 107–121.
https://doi.org/10.1029/WR018i001p00107

Hope, D., Billett, M. F., and Cresser, M. S. 1997. Export of organic carbon in two river systems in NE Scotland. J. Hydrol., 193, 61–82.
https://doi.org/10.1016/S0022-1694(96)03150-2

ISO 10260. 1992. Water Quality – Measurement of Bio­chemical Parameters – Spectrometric Determination of the Chlorophyll a Concentration. International Organi­zation for Standardization, Switzerland.

Järvekülg, A. 2001. Eesti jõed. Tartu Ülikooli Kirjastus, Tartu (in Estonian).

Järvet, A. 2005. Võrtsjärve alamvesikonna veemajanduskava seireprogrammi analüüs ja ettepanekud. Eesti Keskkonna­ministeerium, Tallinn (in Estonian).

Kendall, M. 1975. Multivariate Analysis. Charles Griffin & Company, London.

Kendall, C., Silva, S. R., and Kelly, V. J. 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrol. Process., 15, 1301–1346.
https://doi.org/10.1002/hyp.216

Kisand, V. and Nõges, T. 2004. Abiotic and biotic factors regulating dynamics of bacterioplankton in a large shallow lake. FEMS Microbiol. Ecol., 50, 51–62.
https://doi.org/10.1016/j.femsec.2004.05.009

Koch, R. W., Bukaveckas, P. A., and Guelda, D. L. 2006. Importance of phytoplankton carbon to heterotrophic bacteria in the Ohio, Cumberland, and Tennessee rivers, USA. Hydrobiologia, 586, 79–91.
https://doi.org/10.1007/s10750-006-0525-1

Kosten, S., Huszar, V. L. M., Bécares, E., Costa, L. S., van Donk, E., Hansson, L-A., et al. 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biol., 18, 118–126.
tps://doi.org/10.1111/j.1365-2486.2011.02488.x

Laslett, G. M., Clark, R. M., and Jones, G. J. 1997. Estimating the precision of filamentous blue-green algae cell concen­tration from a single sample. Environmetrics, 8, 313–339.
https://doi.org/10.1002/(SICI)1099-095X(199707)8:4<313::AID-ENV253>3.0.CO;2-V

Lobbes, J. M., Fitznar, H. P., and Kattner, G. 2000. Bio­chemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochim. Cosmochim. Ac., 64, 2973–2983.
https://doi.org/10.1016/S0016-7037(00)00409-9

Longworth, B. E., Petsch, S. T., Raymond, P. A., and Bauer, J. E. 2007. Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system. Geochim. Cosmochim. Ac., 71, 4233–4250.
https://doi.org/10.1016/j.gca.2007.06.056

Loopmann, A. 1979. Eesti NSV jõgede nimestik. Valgus, Tallinn (in Estonian).

Maa-amet. 2001. Vabariigi digitaalse suure mõõtkavalise mullastiku kaardi seletuskiri (Estonian Land Board. Explication of the large-scale digital soil map of Estonia). http://www.maaamet.ee/docs/kaardid/mullakaardi_seletuskiri.pdf (accessed 2017-05-10).

Malzahn, A. M., Aberle, N., Clemmesen, C., and Boersma, M. 2007. Nutrient limitation of primary producers affects planktivorous fish condition. Limnol. Oceanogr., 52, 2062–2071.
https://doi.org/10.4319/lo.2007.52.5.2062

Marker, A. F. H. and Gunn, R. J. M. 1977. The benthic algae of some streams in southern England: III. Seasonal variations in chlorophyll a in the seston. J. Ecol., 65, 223–234.
https://doi.org/10.2307/2259076

Mattsson, T., Finér, L., Kortelainen, P., and Sallantaus, T. 2003. Brook water quality and background leaching from unmanaged forested catchments in Finland. Water Air Soil Poll., 147, 275–297.
https://doi.org/10.1023/A:1024525328220

Miidel, A. 2004. Main features of river geology. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 61–66. Estonian Encyclopaedia Publishers, Tallinn.

Miidel, A., Raukas, A., and Vaher, R. 2004. Geology of the lake basin. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 33–47. Estonian Encyclopaedia Publishers, Tallinn.

Neal, C., Hilton, J., Wade, A. J., Neal, M., and Wickham, H. 2006. Chlorophyll-a in the rivers of eastern England. Sci. Total Environ., 365, 84–104.
https://doi.org/10.1016/j.scitotenv.2006.02.039

Niemirycz, E., Gozdek, J., and Koszka-Maroń, D. 2006. Variability of organic carbon in water and sediments of the Odra River and its tributaries. Polish J. Environ. Stud., 15, 557–563.

Nõges, T. 1989. ATP as an index of phytoplankton productivity. The Chl a/ATP quotient. Int. Rev. Gesamt. Hydrobiol., 74, 121–133.
https://doi.org/10.1002/iroh.19890740202

Nõges, P. and Nõges, T. 2012. Lake Võrtsjärv. In Encyclopedia of Lakes and Reservoirs (Bengtsson, L., Herschy, R., and Fairbridge, R. eds), pp. 850–863. Springer, Dordrecht–Heidelberg–New York–London.

Nõges, P. and Tuvikene, L. 2012. Spatial and annual variability of environmental and phytoplankton indicators in Lake Võrtsjärv: implications for water quality monitoring. Estonian J. Ecol., 61, 227–246.
https://doi.org/10.3176/eco.2012.4.01

Nõges, P., Laugaste, R., and Nõges, T. 2004. Phytoplankton. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 217–231. Estonian Encyclopaedia Publishers, Tallinn.

Nõges, P., Nõges, T., Adrian, R., and Weyhenmeyer, G. A. 2008a. Silicon load and the development of diatoms in three river-lake systems in countries surrounding the Baltic Sea. Hydrobiologia, 599, 67–76.
https://doi.org/10.1007/s10750-007-9194-y

Nõges, T., Laugaste, R., Nõges, P., and Tõnno, I. 2008b. Critical N:P ratio for cyanobacteria and N2-fixing species in the large shallow temperate lakes Peipsi and Võrtsjärv, North-East Europe. Hydrobiologia, 599, 77–86.
https://doi.org/10.1007/978-1-4020-8379-2_9
https://doi.org/10.1007/s10750-007-9195-x

Panagiotopoulos, C., Sempéré, R., Para, J., Raimbault, P., Rabouille, C., and Charrière, B. 2012. The composition and flux of particulate and dissolved carbohydrates from the Rhone River into the Mediterranean Sea. Biogeosciences, 9, 1827–1844.
https://doi.org/10.5194/bg-9-1827-2012

Piirsoo, K., Vilbaste, S., Truu, J., Pall, P., Trei, T., Tuvikene, A., and Viik, M. 2007. Origin of phytoplankton and the environmental factors governing the structure of micro­algal communities in lowland streams. Aquat. Ecol., 41, 183–194.
https://doi.org/10.1007/s10452-007-9077-3

Piirsoo, K., Pall, P., Tuvikene, A., and Viik, M. 2008. Temporal and spatial patterns of phytoplankton in a temperate lowland river (Emajõgi, Estonia). J. Plankton Res., 30, 1285–1295.
https://doi.org/10.1093/plankt/fbn082

Piirsoo, K., Viik, M., Kõiv, T., Käiro, K., Laas, A., Nõges, T., et al. 2012. Characteristics of dissolved organic matter in the inflows and in the outflow of lake Võrtsjärv, Estonia. J. Hydrol., 475, 306–313.
https://doi.org/10.1016/j.jhydrol.2012.10.015

Putland, J. N., Mortazavi, B., Iverson, R. L., and Wise, S. W. 2014. Phytoplankton biomass and composition in a river-dominated estuary during two summers of contrasting river discharge. Estuar. Coast., 37, 664–679.
https://doi.org/10.1007/s12237-013-9712-2

Rask, M., Nyberg, K., Markkanen, S-L., and Ojala, A. 1998. Forestry in catchment: effects on water quality, plankton, zoobenthos and fish in small lakes. Boreal Environ. Res., 3, 75–86.

Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B., and Petsch, S. T. 2004. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Mar. Chem., 92, 353–366.
https://doi.org/10.1016/j.marchem.2004.06.036

Reynolds, C. S. 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Growth and Reproductive Strategies of Freshwater Phytoplankton (Sandgren, C. D., ed.), pp. 388–433. Cambridge University Press.

Reynolds, C. S. 2006. The Ecology of Phytoplankton. Cambridge University Press.
https://doi.org/10.1017/CBO9780511542145

Reynolds, C. S., Descy, J-P., and Padisák, J. 1994. Are phytop­lankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia, 289, 1–7.
https://doi.org/10.1007/BF00007404

Savoye, N., David, V., Morisseau, F., Etcheber, H., Abril, G., Billy, I., et al. 2012. Origin and composition of particulate organic matter in a macrotidal turbid estuary: the Gironde estuary, France. Estuar. Coast Shelf S., 108, 16–28.
https://doi.org/10.1016/j.ecss.2011.12.005

Scheffer, M., Hosper, S. H., Meijer, M-L., Moss, B., and Jeppesen, E. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275–279.
https://doi.org/10.1016/0169-5347(93)90254-M

Sobczak, W. V., Cloern, J. E., Jassby, A. D., and Müller-Solger, A. B. 2002. Bioavailability of organic matter in a highly disturbed estuary: the role of detrital and algal resources. P. Natl. Acad. Sci. USA, 99, 8101–8105.
https://doi.org/10.1073/pnas.122614399

Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., and Cole, J. J. 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr., 52, 1208–1219.
https://doi.org/10.4319/lo.2007.52.3.1208

Stutter, M. I., Langan, S. J., and Demars, B. O. L. 2007. River sediments provide a link between catchment pressures and ecological status in a mixed land use Scottish river system. Water Res., 41, 2803–2815.
https://doi.org/10.1016/j.watres.2007.03.006

Taylor, B. R. and Roff, J. C. 1984. Use of ATP and carbon: nitrogen ratio as indicators of food quality of stream detritus. Freshwater Biol., 14, 195–201.
https://doi.org/10.1111/j.1365-2427.1984.tb00034.x

Thomas, R. and Meybeck, M. 1996. The use of particulate material. In Water Quality Assessments – A Guide to Use Biota, Sediments and Water in Environmental Monitoring. 2nd ed. (Chapman, D., ed.), pp. 127–174. UNSECO/WHO/UNEP.

Thorp, J. H. and Delong, M. D. 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos, 96, 543–550.
https://doi.org/10.1034/j.1600-0706.2002.960315.x

Tipping, E., Marker, A. F. H., Butterwick, C., Collett, G. D., Cranwell, P. A., Ingram, J. K. G., et al. 1997. Organic carbon in the Humber rivers. Sci. Total Environ., 194/195, 345–355.
https://doi.org/10.1016/S0048-9697(96)05374-0

Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54, 2298–2314.
https://doi.org/10.4319/lo.2009.54.6_part_2.2298

Utermöhl, H. 1958. Zur Vervollkommung der quantitative Phytoplankton-Methodik. Mitt. Internat. Verein. Theor. Angew. Limnol., 9, 1–38.

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. 1980. The river continuum concept. Canadian J. Fish Aquat. Sci., 37, 130–137.
https://doi.org/10.1139/f80-017

Vesterinen, J., Devlin, S. P., Syväranta, J., and Jones, R. I. 2016. Accounting for littoral primary production by periphyton shifts a highly humic boreal lake towards net autotrophy. Freshwater Biol., 61, 265–276.
https://doi.org/10.1111/fwb.12700

Veyssy, E., Etcheber, H., Lin, R. G., Buat-Menard, P., and Maneux, E. 1999. Seasonal variation and origin of particulate organic carbon in the lower Garonne River at La Reole (southwestern France). Hydrobiologia, 391, 113–126.
https://doi.org/10.1023/A:1003520907962

Vieira, A. H. H. and Myklestad, S. 1986. Production of extracellular carbohydrate in cultures of Ankistrodesmus densus Kors. (Chlorophyceae). J. Plankton Res., 8, 985–994.
https://doi.org/10.1093/plankt/8.5.985

Vilbaste, S., Pall, P., and Viik, M. 2015. Hydrochemical database of inflows and outflow of Võrtsjärv. Freshwater Metadata J., 6, 1–7.
https://doi.org/10.15504/fmj.2015.6

Volkman, J. K. and Tanoue, E. 2002. Chemical and biological studies of particulate organic matter in the ocean. J. Oceanogr., 58, 265–279.
https://doi.org/10.1023/A:1015809708632

Wallace, J. B., Eggert, S. L., Meyer, J. L., and Webster, J. R. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science, New Ser., 277, 102–104.

Webster, J. R., Benfield, E. F., Ehrman, T. P., Schaeffer, M. A., Tank, J. L., Hutchens, J. J., and D’Angelo, D. J. 1999. What happens to allochthonous material that falls into streams? A synthesis of new and published information from Coweeta. Freshwater Biol., 41, 687–705.
https://doi.org/10.1046/j.1365-2427.1999.00409.x

Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.

Winterfeld, M., Goñi, M. A., Just, J., Hefter, J., and Mollenhauer, G. 2015a. Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia – Part 2: Lignin-derived phenol compositions. Biogeosciences, 12, 2261–2283.
https://doi.org/10.5194/bg-12-2261-2015

Winterfeld, M., Laepple, T., and Mollenhauer, G. 2015b. Characterization of particulate organic matter in the Lena River delta and adjacent nearshore zone, NE Siberia – Part 1: Radiocarbon inventories. Biogeosciences, 12, 3769–3788.
https://doi.org/10.5194/bg-12-2261-2015
https://doi.org/10.5194/bg-12-3769-2015

Yin, K., Qian, P-Y., Chen, J. C., Hsieh, D. P. H., and Harrison, P. J. 2000. Dynamics of nutrients and phytoplankton biomass in the Pearl River estuary and adjacent waters of Hong Kong during summer: preliminary evidence for phosphorus and silicon limitation. Mar. Ecol. Prog. Ser., 194, 295–305.
https://doi.org/10.3354/meps194295

Zingel, P., Agasild, H., Nõges, T., and Kisand, V. 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Microbial Ecol., 53, 134–142.
https://doi.org/10.1007/s00248-006-9155-4

Back to Issue