The paper focuses on the adaptation of the Newton observer for the estimation of the magnetic flux in the feedback control of a nonlinear active magnetic bearing (AMB) system. The Newton observer is constructed for the exact discrete-time model of the AMB system and is presented in a detailed and simple algorithm ready for implementation. The observer is combined with three controllers, and the effectiveness of the observer-based control scheme is verified via numerical simulations.
1. Arcak, M. and Kokotović, P. Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans. Autom.Control, 2001, 46, 1146–1150.
https://doi.org/10.1109/9.935073
2. Baloh, M., Tao, G., and Allaire, P. Modeling and control of a magnetic bearing actuated beam. In Proceedings of the 2000 American Control Conference, Chicago, IL, USA (Zhu, J., ed.), Vol. 3. IEEE, 2000, 1602–1606.
https://doi.org/10.1109/ACC.2000.879471
3. Baranowski, J. and Tutaj, A. Continuous state estimation in water tank system. In Computer Methods and Systems, VI Konferencja Metody i Systemy Komputerowe, Kraków, Poland (Tadeusiewicz, R., Ligeza, A., and Szymkat, M., eds). ONT, 2007, 373–378.
4. Bıyık, E. and Arcak, M. A hybrid redesign of Newton observers in the absence of an exact discrete-time model. Syst. Control.Lett., 2006, 55, 429–436.
https://doi.org/10.1016/j.sysconle.2005.09.005
5. Chen, S.-L. and Hsiao, Y.-H. Nonlinear high-gain observer for a three-pole active magnetic bearing system. In The 8th Asian Control Conference, Kaohsiung, Taiwan. IEEE, 2011, 155–159.
6. Farkhatdinov, I., Hayward, V., and Berthoz, A. On the benefits of head stabilization with a view to control balance and locomotion in humanoids. In The 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia. IEEE, 2011, 147–152.
https://doi.org/10.1109/Humanoids.2011.6100859
7. Grossman, W. D. Observers for Discrete-time Nonlinear Systems. PhD thesis, New Jersey Institute of Technology, 1999.
8. Kotta, Ü. Discrete-time models of a nonlinear continuous-time system. Proc. Estonian Acad. Sci. Phys.Math., 1994, 43, 64–78.
9. Lin, Z. and Knospe, C. A saturated high gain control for a benchmark experiment. In The American Control Conference, Chicago, IL, USA (Zhu, J., ed.), Vol. 4. IEEE, 2000, 2644–2648.
10. Maslen, E. Magnetic Bearings. Graduate Seminar Notes, Department of Mechanical and Aerospace Engineering, University of Virginia, 2000.
11. Mizuno, T., Araki, K., and Bleuler, H. Stability analysis of self-sensing magnetic bearing controllers. IEEE Trans. Control Syst. Technol., 1996, 4, 572–579.
https://doi.org/10.1109/87.531923
12. Monaco, S. and Normand-Cyrot, D. On the sampling of a linear analytic control system. In The 24th IEEE Conference on Decision and Control, Fort Lauderdale, FL, USA. IEEE, 1985, 1457–1462.
https://doi.org/10.1109/CDC.1985.268753
13. Moraal, P. E. Nonlinear Observer Design: Theory and Applications to Automotive Control. PhD thesis, University of Michigan, 1994.
14. Moraal, P. E. and Grizzle, J. W. Observer design for nonlinear systems with discrete-time measurements. IEEE Trans. Autom. Control, 1995, 40, 395–404.
https://doi.org/10.1109/9.376051
15. Mystkowski, A. Sensitivity and stability analysis of mu-synthesis AMB flexible rotor. Solid State Phenom., 2010, 164, 313–318.
https://doi.org/10.4028/www.scientific.net/SSP.164.313
16. Mystkowski, A. and Pawluszewicz, E. Remarks on some robust nonlinear observer and state-feedback zero-bias control of AMB. In The 16th International Carpathian Control Conference, Szilvásvárad, Hungary (Petráš, I., Podlubny, I., Kačur, J., and Vásárhelyi, J., eds). IEEE, 2015, 328–333.
https://doi.org/10.1109/CarpathianCC.2015.7145098
17. Mystkowski, A., Pawluszewicz, E., and Dragašius, E. Robust nonlinear position-flux zero-bias control for uncertain AMB system. Int. J. Control, 2015, 88, 1619–1629.
https://doi.org/10.1080/00207179.2015.1012118
18. Noshadi, A., Shi, J., Lee, W. S., Shi, P., and Kalam, A. Robust control of an active magnetic bearing system using H∞ and disturbance observer-based control. J. Vib. Control, 2017, 23, 1857–1870.
https://doi.org/10.1177/1077546315602421
19. Torres, M., Sira-Ramirez, H., and Escobar, G. Sliding mode nonlinear control of magnetic bearings. In Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, HI, USA, Vol. 1. IEEE, 1999, 743–748.
https://doi.org/10.1109/CCA.1999.807754
20. Tsiotras, P. and Arcak, M. Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs. IEEE Trans. Control Syst. Technol., 2005, 13, 262–273.
https://doi.org/10.1109/TCST.2004.839562
21. Tsiotras, P. and Velenis, E. Low-bias control of AMB’s subject to saturation constraints. In Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, AK, USA. IEEE, 2000, 138–143.
22. Tsiotras, P., Wilson, B., and Bartlett, R. Control of zero-bias magnetic bearings using control Lyapunov functions. In Proceedings of he 39th IEEE Conference on Decision and Control, Sydney, Australia, Vol. 4. IEEE, 2000, 4048–4053.
https://doi.org/10.1109/CDC.2000.912348
23. Tsiotras, P. and Wilson, B. C. Zero- and low-bias control designs for active magnetic bearings. IEEE Trans. Control Syst. Technol., 2003, 11, 889–904.
https://doi.org/10.1109/TCST.2003.819593
24. Vischer, D. and Bleuler, H. Self-sensing active magnetic levitation. IEEE Trans. Magn., 1993, 29, 1276–1281.
https://doi.org/10.1109/20.250632