Postulating kinetic energy dominance (KED) in the flat or observationally quasi-flat elliptical model universe with neither dark matter nor dark energy, it has been demonstrated that the curves of apparent luminosity versus redshift as the distance measure in the KED model universe and in the standard LCDM universe for Ia type supernovae as the standard candles are well-matching ones. This circumstance demonstrates that in cosmology there is probably no need for additional gravitationally attractive dark matter and repulsive dark energy. The KED model universe incorporates an additive, p2 = -ρ2c2/3, to the equation of state that describes the total energy integral, often treated as a special case of ‘quintessence’. The Einstein equations of general relativity have been tentatively modified in the spirit of Mach’s principle, multiplying a new cosmological coefficient by the ratio of total retarding gravitational potential of matter in the universe to c2. The KED model universe can originate from a collapsing huge-mass black hole in its internal region, describable by isotropic coordinates, as a new expanding universe. The mass of such a collapsing black hole passes, for a long time and with a constant rate, Ṁ = c3/2G, through the past horizon (Schwarzschild trap surface), generating a modified Milne-type expanding Big-Bang universe.
Abbot, B. P., Abbot, R., Abbot, T. D., et al. 2016. GW151226: Observation of gravitational waves from a 22-solar-mass binary black holes coalescence. Phys. Rev. Lett., 116, 241103, 1–14.
https://doi.org/10.1103/physrevlett.116.241103
Ade, P. A. R., Aikin, R. W., Barkats, D., et al. 2014. Detection of B-mode polarization at degree angular scales by BICEP2. Phys. Rev. Lett.,112, 241101.
https://doi.org/10.1103/PhysRevLett.112.241101
Baade, W. 1952. A revision of extra-galactic distance scale. Trans. IAU, 8, 397–398.
Bennett, C. L., Bay, M., Halperk, G., et al. 2003a. The Microwave Anisotropy Probe mission. Ap.J., 583, 1–23.
Bennett, C. L., Hill, R. S., Hinshaw, G., et al. 2003b. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: foreground emission. Ap.J. Suppl., 148, 97–117.
Benoit-Lévy, A. and Chardin, G. 2012. Introducing the Dirac–Milne universe. A&A, 537. Manuscript No. BLC11, 1–12.
Caldwell, R. R. and Kamionkowski, M. 2004. Expansion, geometry and gravity. J. Cosm. Astropart. Phys., 9, 1–6.
https://doi.org/10.1088/1475-7516/2004/09/009
Chernin, A. D. 2001. Discovering internal symmetry in cosmology. astro-ph/10003C.
Choudhury, T. R. and Padmanabhan, T. 2005. Cosmological parameters from supernova observations: a critical comparison of three data sets. A&A, 429, 807–818.
Eddington, A. S. 1924. The Mathematical Theory of Relativity. Cambridge University Press.
Einstein, A. 1916a. Grundlage der allgemeinen Relativit¨atstheorie. Annalen der Physik (Ser. 4), 49, 769–822.
Einstein, A. 1916b. Ernst Mach. Physikalische Zeitschrift, 17, 101–104.
Friedmann, A. 1922. Über die Krümmung des Raumes. Z. Phys., 10, 377–386.
https://doi.org/10.1007/BF01332580
Friedmann, A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys., 21, 326–332.
https://doi.org/10.1007/BF01328280
Guth, A. H. 1980. Inflationary universe: a possible solution to the horizon and flatness problem. Phys. Rev., D23, 347–356.
https://doi.org/10.1103/PhysRevD.23.347
Hoyle, F. 1948. A new model of expanding universe. MNRAS, 108, 372–382.
https://doi.org/10.1093/mnras/108.5.372
Hoyle, F. 1949. On the cosmological problem. MNRAS, 109, 363–371.
https://doi.org/10.1093/mnras/109.3.365
Hoyle, F. and Narlikar, J. V. 1964. A new theory of gravitation. Roc. Roy. Soc. A, 282, 191–207.
https://doi.org/10.1098/rspa.1964.0227
Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. P. Natl. Acad. Sci. USA, 15(3), 168–173.
https://doi.org/10.1073/pnas.15.3.168
Lemaȋtre, G. 1927. Un univers homogène de masse constante et de rayon croissant, rendant compte de la vitesse radiale des nébuleuses extragalactiques. Ann. Sci. Soc. Brux., 47A, 41–49.
Lemaȋtre, G. 1931. The beginning of the world from the point of view of quantum theory. Nature, 127, 706.
https://doi.org/10.1038/127706b0
Linde, A. D. 1982. A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy, and primordial monopole problems. Phys. Lett. B, 108, 389–393.
https://doi.org/10.1016/0370-2693(82)91219-9
Melia, F. 2012. Fitting the Union2.1 SN sample with the Rh = ct universe. Astron. J., 144, A110.
https://doi.org/10.1088/0004-6256/144/4/110
Melia, F. 2013. The Rh = ct universe without inflation. A&A, 553, A76.
Melia, F. and Maier, R. S. 2013. Cosmic chronometers in the Rh = ct universe. MNRAS, 432, 2669–2675.
https://doi.org/10.1093/mnras/stt596
Milne, A. 1935. Relativity, Gravitation and the World Structure. Oxford University. Press.
Nielsen, J. T., Guffanti, A., and Sarkar, S. 2016. Marginal evidence for cosmic acceleration from Type Ia supernovae. Sci. Rep., 6, Article No 35596.
https://doi.org/10.1038/srep35596
Penzias, A. A. and Wilson, R. W. 1965a. A measurement of excess antenna temperature at 4080 Mc/s. Ap.J. Lett., 142, 419–421.
https://doi.org/10.1086/148307
Penzias, A. A. and Wilson, R. W. 1965b. A measurement of the flux density of Cas A at 4080 Mc/s. Ap.J. Lett., 142, 1149–1154.
https://doi.org/10.1086/148307
https://doi.org/10.1086/148384
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1998. Measurements of Ω and L from 42 high-redshift supernovae. Ap.J., 517, 565–586.
https://doi.org/10.1086/307221
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Ap.J., 116, 1009–1038.
https://doi.org/10.1086/300499
Sandage, A. 1954. The first four years of extragalactic research with the Hale 200-inch telescope. Astron. J., 59, 180–Sandage, A. 1958. Current problems in the extragalactic distance scale. Ap.J., 127, 513–526.
https://doi.org/10.1086/146483
Sapar, A. 1964. Theory of some observable quantities in the cosmology of uniform universe. Publ. Tartu Astrophys. Obs., 34, 223–318.
Sapar, A. 1965. Theory of some observable quantities in the cosmology of uniform universe. II. Tartu Astr. Obs. Teated, 13, 1–105.
Sapar, A. 1977. Evidence for the fundamental role of Planck units in cosmology. Publ. Tartu Astrophys. Obs., 45, 204–210.
Sapar, A. 2011. Cosmological neutrino background and connected problems. Baltic Astronomy, 20, 267–274.
Sapar, A. 2013. Physical alternative to the dark energy paradigm. Baltic Astronomy, 22, 315–328.
https://doi.org/10.1515/astro-2017-0162
Sapar, A. 2014. Dynamics of cosmic neutrinos in galaxies. Baltic Astronomy, 23, 71–91.
https://doi.org/10.1515/astro-2017-0173
Spergel, D. N., Verde, L., Peiris, H. V., et al. 2003. First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Ap.J. Suppl., 148, 175–194.
Starobinsky, A. A. 1980. A new type of isotropic cosmological models without singularity. Phys. Lett. B., 91, 99–102.
https://doi.org/10.1016/0370-2693(80)90670-X
Tatum, E. T., Seshavatharam, U. V. S., and Lakshminarayana, S. 2015. Flat space cosmology as an alternative to LCDM cosmology. Frontiers Astron. Astrophys. Cosmology, 1, 98–104.
Wei, J.-J., Wu, X.-E, Melia, F., and Maier, R. S. 2015. A comparative analysis of the supernova legacy survey sample with LCDM and the Rh = ct universe. Astron. J., 149, 102–112.https://doi.org/10.1088/0004-6256/149/3/102