Potassium iodide catalysis was applied for the synthesis of protected benzylhydrazines and hydrazinoacetic acid esters by the alkylation of protected hydrazines. Benzylic halogenides and halogenoacetic acid esters were employed as alkylating agents. In these syntheses the reactive alkyl iodide molecules were generated in situ from less reactive halogenides, which significantly accelerated the alkylation reaction. The effectiveness of potassium iodide catalysis was proved by experiments performed under the same conditions in the absence of this salt.
1. Boeglin, D. and Lubell, W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with Fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem., 2005, 7, 864–878.
https://doi.org/10.1021/cc050043h
2. Quibell, M., Turnell, W. G., and Johnson, T. Synthesis of azapeptides by the Fmoc/tert-butyl/polyamide technique. J. Chem. Soc., Perkin Trans. 1, 1993, 2843–2849.
https://doi.org/10.1039/p19930002843
3. Zega, A. Azapeptides as pharmacological agents. Curr. Med. Chem., 2005, 12, 589–597.
https://doi.org/10.2174/0929867310504050589
https://doi.org/10.2174/0929867053362802
4. Proulx, C., Sabatino, D., Hopewell, R., Spiegel, J., Garcia Ramos, Y., and Lubell, W. D. Azapeptides and their therapeutic potential. Future Med. Chem., 2011, 3, 1139–1164.
https://doi.org/10.4155/fmc.11.74
5. Fässler, A., Bold, G., Capraro, H.-G., Cozens, R., Mestan, J., Poncioni, B., et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J. Med. Chem., 1996, 39, 3203–3216.
https://doi.org/10.1021/jm960022p
6. Venkatraman, S., Wu, W., Shih, N.-Y., and Njoroge, F. G. Potent aza-peptide derived inhibitors of HCV NS3 protease. Bioorg. Med. Chem. Lett., 2009, 19, 4760–4763.
https://doi.org/10.1016/j.bmcl.2008.10.124
https://doi.org/10.1016/j.bmcl.2009.06.060
7. Staal, E. and Faurholt, C. Carbamates. IV. The carbamate of hydrazine. Dansk Tidsskrift for Farmaci, 1951, 25, 1–12.
8. Mastitski, A., Kisseljova, K., and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkylation. Proc. Estonian Acad. Sci., 2014, 63, 438–443.
https://doi.org/10.3176/proc.2014.4.09
9. Mastitski, A., Haljasorg, T., Kipper, K., and Järv, J. Synthesis of aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors via hydrazine alkylation. Proc. Estonian. Acad. Sci., 2015, 64, 168–178.
https://doi.org/10.3176/proc.2015.2.05
10. Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A., et al. Solid-phase synthesis of “mixed” peptidomimetics using Fmoc-protected aza-β3-amino acids and α-amino acids. J. Org. Chem., 2005, 70, 10701–10708.
https://doi.org/10.1021/jo051585o
11. Busnel, O. and Baudy-Floc’h, M. Preparation of new monomers aza-β3-aminoacids for solid-phase syntheses of aza-β3-peptides. Tetrahedron Lett., 2007, 48, 5767–5770.
https://doi.org/10.1016/j.tetlet.2007.06.082
12. Ruan, M., Nicolas, I., and Baudy-Floc’h, M. New building blocks or dendritic pseudopeptides for metal chelating. SpringerPlus, 2016, 5, 55.
https://doi.org/10.1186/s40064-016-1703-x
13. Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines. Chem. Soc. Rev., 2001, 30, 205–213.
https://doi.org/10.1039/b010091a
14. Lee, J. and Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol., 2010, 5, 233–243.
https://doi.org/10.1021/cb900232a
15. Spiegel, J., Mas-Moruno, C., Kessler, H., and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and biological activity. J. Org. Chem., 2012, 77, 5271–5278.
16. Zouikri, M., Vicherat, A., Marraud, M., and Boussar, G. Azaproline as a beta-turn-inducer residue opposed to proline. J. Pept. Res., 1998, 52, 19–26.
https://doi.org/10.1111/j.1399-3011.1998.tb00648.x
17. Garcia-Ramos, Y., Proulx, C., and Lubell, W. D. Synthesis of hydrazine and azapeptide derivatives by alkylation of carbazates and semicarbazones. Can. J. Chem., 2012, 90, 11, 985–993.
https://doi.org/10.1139/v2012-070
18. Traoré, M., Doan, N. D., and Lubell, W. D. Diversity-oriented synthesis of azapeptides with basic amino acid residues: aza-lysine, aza-ornithine, and aza-arginine. Org. Lett., 2014, 16, 3588–3591.
https://doi.org/10.1021/ol501586y
19. Douchez, A. and Lubell, W. D. Chemoselective alkylation for diversity-oriented synthesis of 1,3,4-benzotriazepin-2-ones and pyrrolo[1,2][1,3,4]benzotriazepin-6-ones, potential turn surrogates. Org. Lett., 2015, 17, 6046–6049.
https://doi.org/10.1021/acs.orglett.5b03046
20. Doan, N.-D., Zhang, J., Traoré, M., Kamdem, W., and Lubell, W. D. Solid-phase synthesis of C-terminal azapeptides. J. Pept. Sci., 2015, 21, 387–391.
https://doi.org/10.1002/psc.2711
21. Merlino, F., Yousif, A. M., Billard, E., Dufour-Gallant, J., Turcotte, S., Grieco, P., et al. Urotensin II(4–11) azasulfuryl peptides: synthesis and biological activity. J. Med. Chem., 2016, 59, 4740−4752.
https://doi.org/10.1021/acs.jmedchem.6b00108
22. Romera, J. L., Cid, J. M., and Trabanco, A. A. Potassium iodide catalyzed monoalkylation of anilines under microwave irradiation. Tetrahedron Lett., 2004, 45, 8797–8800.
https://doi.org/10.1016/j.tetlet.2004.10.002
23. Kabalka, G. W., Reddy, N. K., and Narayana, C. Lithium iodide-catalyzed alkylation of carboranes. Tetrahedron Lett., 1992, 33, 7687–7688.
https://doi.org/10.1016/0040-4039(93)88017-D
24. Satoh, T., Matsue, R., Fujii, T., and Morikawa, S. Alkylation of nonstabilized aziridinylmagnesiums catalyzed by Cu(I) iodide: a new synthesis of amines, including optically active form, bearing a quaternary chiral center. Tetrahedron Lett., 2000, 41, 6495–6499.
https://doi.org/10.1016/S0040-4039(00)01085-6
25. Carpino, L. A. and Han, G. Y. The 9-fluorenylmethoxycarbonyl amino-protecting group. J. Org. Chem., 1972, 37, 3404–3409.
https://doi.org/10.1021/jo00795a005
26. Rabjohn, N. The synthesis and reactions of disazodicarboxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.
27. McKay, F. C. and Albertson, N. F. New amine-masking groups for peptide synthesis. J. Am. Chem. Soc., 1957, 79, 4686–4690.
https://doi.org/10.1021/ja01574a029
28. Dourlat, J., Liu, W.-Q., Gresh, N., and Garbay, C. Novel 1,4-benzodiazepine derivatives with antiproliferative properties on tumor cell lines. Biorg. Med. Chem. Lett., 2007, 17, 2527–2530.
https://doi.org/10.1016/j.bmcl.2007.02.016
29. Mäeorg, U., Pehk, T., and Ragnarsson, U. Synthesis of substituted hydrazines from triprotected precursors. Acta Chem. Scan., 1999, 53, 1127–1133.
https://doi.org/10.3891/acta.chem.scand.53-1127
30. Carpino, L. A., Santilli, A. A., and Murray, R. W. Oxidative reactions of hydrazines. V. Synthesis of monobenzyl 1,1-disubstituted hydrazines and 2-amino-2,3-dihydro-1H-benz[de]isoquinoline. J. Am. Chem. Soc., 1960, 82, 2728–2731.
https://doi.org/10.1021/ja01496a019
31. Gwaltney, S. L., O’Connor, S. J., Nelson, L. T. J., Sullivan, G. M., Imade, H., Wang, W., et al. Aryl tetrahydropyridine inhibitors of farnesyltransferase: bioavailable analogues with improved cellular potency. Bioorg. Med. Chem. Lett., 2003, 13, 1363–1366.
https://doi.org/10.1016/S0960-894X(03)00094-5
32. Bouayad-Gervais, S. H. and Lubell, W. D. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame. Molecules, 2013, 18, 14739–14746.
https://doi.org/10.3390/molecules181214739
33. Squibb, E. R. and Sons, Inc. Preparation of N-Substituted Azetidinone Derivatives as Antibiotics. Belgian patent BE 905 205; Chem. Abstr., 1988, 108, 693, 55 763e.
34. Peifer, M., Giacomo, F. D., Schandl, M., and Vasella, A. Oligonucleotide analogues with integrated bases and backbone hydrazide- and amide-linked analogues. 1. Design and synthesis of monomeric building blocks. Helv. Chim. Acta, 2009, 92, 1134–1166.
https://doi.org/10.1002/hlca.200900047
https://doi.org/10.1002/cber.19650981104