Pollution caused by shipping accidents or by intentional discharge of harmful materials can be transported by currents to locations far from the source, and therefore poses a potential risk to marine protected areas (MPAs). The risk of current-driven pollution to MPAs in the Gulf of Finland is assessed by analysing the paths from 23 surface drifters crossing a major fairway in the western and central parts of the Gulf of Finland. About 2/3 of the drifters entered into one of the MPAs. The majority of drifters reached the Ekenäs Archipelago near the western coast of Finland. The travel time from the fairway to the MPAs ranged from 1.3 days to 36.1 days, suggesting that different processes may be influencing the surface circulation patterns and that the drifters can travel long distances before reaching a MPA.
2. Andrejev, O., Myrberg, K., Alenius, P., and Lundberg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modeling. Boreal Environ. Res., 2004, 9, 1–16.
3. Andrejev, O., Soomere, T., Sokolov, A., and Myrberg K. The role of spatial resolution of a three-dimensional hydrodynamic model for marine transport risk assessment. Oceanologia, 2011, 53(1-TI), 309–334.
http://dx.doi.org/10.5697/oc.53-1-TI.309
5. Burgherr, P. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. J. Hazard. Mater., 2007, 140, 245–256.
http://dx.doi.org/10.1016/j.jhazmat.2006.07.030
6. Chrastansky, A. and Callies, U. Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Mar. Poll. Bull., 2009, 58, 967–975.
http://dx.doi.org/10.1016/j.marpolbul.2009.03.009
7. Delpeche-Ellmann, N. C. and Soomere, T. Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar. Poll. Bull., 2013, 67(1–2), 121–129.
http://dx.doi.org/10.1016/j.marpolbul.2012.11.025
10. Fingas, M. (ed.). Handbook of Oil Spill Science and Technology. Wiley-Blackwell, 2015.
11. Giudici, A. and Soomere, T. Finite-time compressibility as an agent of frequent spontaneous patch formation in the surface layer: a case study for the Gulf of Finland, the Baltic Sea. Mar. Pollut. Bull., 2014, 89(1–2), 239–249.
http://dx.doi.org/10.1016/j.marpolbul.2014.09.053
14. Höglund, A. and Meier, H. E. M. Environmentally safe areas and routes in the Baltic Proper using Eulerian tracers. Mar. Poll. Bull., 2012, 64(7), 1375–1385.
http://dx.doi.org/10.1016/j.marpolbul.2012.04.021
17. Lehmann, A., Myrberg, K., and Höflich, K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanologia, 2012, 54, 369–393.
http://dx.doi.org/10.5697/oc.54-3.369
18. Leppäranta, M. and Myrberg, K. Physical Oceanography of the Baltic Sea. Springer, Berlin, 2009.
http://dx.doi.org/10.1007/978-3-540-79703-6
19. Lu, X., Soomere, T., Stanev, E., and Murawski, J. Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dyn., 2012, 62(6), 815–829.
http://dx.doi.org/10.1007/s10236-012-0532-x
22. Montewka, J., Weckström, M., and Kujala, P. A probabilistic model estimating oil spill clean-up costs – a case study for the Gulf of Finland. Mar. Poll. Bull., 2013, 76, 61–71.
http://dx.doi.org/10.1016/j.marpolbul.2013.09.031
23. Murawski, J. and Woge Nielsen, J. Applications of an oil drift and fate model for fairway design. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, 2013, 367–415.
http://dx.doi.org/10.1007/978-3-319-00440-2_11
24. Myrberg, K. and Soomere, T. The Gulf of Finland, its hydrography and circulation dynamics. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, 2013, 181–222.
http://dx.doi.org/10.1007/978-3-319-00440-2_6
26. Soomere, T. and Quak, E. (eds). Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Springer, 2013.
http://dx.doi.org/10.1007/978-3-319-00440-2
27. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian Acad. Sci., 2010, 59(2), 156–165.
http://dx.doi.org/10.3176/proc.2010.2.15
29. Soomere, T., Viidebaum, M., and Kalda, J. On dispersion properties of surface motions in the Gulf of Finland. Proc. Estonian Acad. Sci., 2011, 60(4), 269–279.
http://dx.doi.org/10.3176/proc.2011.4.07
30. Soomere, T., Döös, K., Lehmann, A., Meier, H. E. M., Murawski, J., Myrberg, K., and Stanev, E. The potential of current- and wind-driven transport for environmental management of the Baltic Sea. Ambio, 2014, 43, 94–104.
http://dx.doi.org/10.1007/s13280-013-0486-3
31. Soosaar, E., Maljutenko, I., Raudsepp, U., and Elken, J. An investigation of anticyclonic circulation in the southern Gulf of Riga during the spring period. Cont. Shelf Res., 2014, 78, 75–84.
http://dx.doi.org/10.1016/j.csr.2014.02.009
32. Torsvik, T. and Kalda, J. Analysis of surface current properties in the Gulf of Finland using data from surface drifters. In 2014 IEEE/OES Baltic International Symposium. Tallinn, 2014, 1–9.
http://dx.doi.org/10.1109/BALTIC.2014.6887845
33. Viikmäe, B. and Soomere, T. Spatial pattern of current-driven hits to the nearshore from a major marine highway in the Gulf of Finland. J. Mar. Syst., 2014, 129, 106–117.
http://dx.doi.org/10.1016/j.jmarsys.2013.06.014
34. Viikmäe, B., Soomere, T., Viidebaum, M., and Berezovski, A. Temporal scales for transport patterns in the Gulf of Finland. Estonian J. Eng., 2010, 16, 211–227.
http://dx.doi.org/10.3176/eng.2010.3.02