ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Quantification of changes in the beach volume by the application of an inverse of the Bruun Rule and laser scanning technology; pp. 240–248
PDF | doi: 10.3176/proc.2015.3.06

Authors
Maris Eelsalu, Tarmo Soomere, Kalev Julge
Abstract

We address the possibilities of combining terrestrial (TLS) and airborne laser scanning (ALS) techniques with the classical concept of equilibrium beach profile to quantify the changes in the total sand volume of slowly evolving sandy beaches. The changes in the subaerial beach are determined from a succession of ALS surveys that were reduced to the same absolute height using a TLS survey of a large horizontal surface of constant elevation. The changes in the underwater sand volume from the waterline down to the closure depth are evaluated using an inverse of the Bruun Rule. The relocation of the waterline is extracted from the ALS scanning of elevation isolines of 0.4–0.7 m. The method is applied to an about 200 m long test area in the central part of Pirita Beach (Tallinn Bay, north-eastern Baltic Sea). The sand volume in this area exhibits extensive interannual variations. The annual gain of sand in the entire beach was about 2000 m3/y in 2008–2010 and the annual loss was about 1100 m3/y in 2010–2014. The changes in the underwater part of the beach are by a factor of 2–2.5 larger than the changes in the subaerial part.

References

  1. Alexandersson, H., Schmith, T., Iden, K., and Tuomen­virta, H. Long-term variations of the storm climate over NW Europe. Global Atmos. Ocean Syst., 1998, 6, 97–120.

  2. Birkemeier, W. A. Field data on seaward limit of profile change. J. Waterw. Port Coast. Ocean Eng.-ASCE, 1985, 111, 598–602.

  3. Bremer, M. and Sass, O. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology, 2010, 138, 49–60.
http://dx.doi.org/10.1016/j.geomorph.2011.08.024

  4. Bruun, P. Sea level rise as a cause of erosion. J. Waterway. Harbors Coastal Eng. Div. ASCE, 1962, 88, 117–133.

  5. Cooper, J. A. G. and Pilkey, O. H. Sea-level rise and shoreline retreat: time to abandon the Bruun Rule. Global Planet. Change, 2004, 43, 157–171.
http://dx.doi.org/10.1016/j.gloplacha.2004.07.001

  6. Dean, R. G. Equilibrium beach profiles: characteristics and applications. J. Coastal Res., 1991, 7, 53–84.

  7. Dean, R. G. and Dalrymple, R. A. Coastal Processes with Engineering Applications. Cambridge University Press, 2002.

  8. Dorninger, P., Szekely, B., Zamolyi, A., and Roncat, A. Automated detection and interpretation of geomorphic features in LiDAR point clouds. Vermessung & Geo­information, 2011, 2, 60–69.

  9. Gruno, A., Liibusk, A., Ellmann, A., Oja, T., Vain, A., and Jürgenson, H. Determining sea surface heights using small footprint airborne laser scanning. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2013 (Conference 8888), Dres­den, Germany, 2013 (Bostater, C., Mertikas, S., and Neyt, X., eds). SPIE, 2013, 88880R-1–88880R-13.
http://dx.doi.org/10.1117/12.2029189

10. Grünthal, E., Gruno, A., and Ellmann, A. Monitoring of coastal processes by using airborne laser scanning data. In Selected Papers of the 9th International Conference on Environmental Engineering, Vilnius, Lithuania, 22–23, May, 2014 (Cygas, D., ed.). Vilnius Gediminas Technical University Press “Technika, Vilnius, 2014, 1–7.
http://dx.doi.org/10.3846/enviro.2014.208

11. Hallermeier, R. J. Uses for a calculated limit depth to beach erosion. In Proceedings of the 16th Inter­national Conference on Coastal Engineering. ASCE, Hamburg, 1978, 1493–1512.

12. Hallermeier, R. J. A profile zonation for seasonal sand beaches from wave climate. Coast. Eng., 1981, 4, 253–277.
http://dx.doi.org/10.1016/0378-3839(80)90022-8

13. Harff, J., Björck, S., and Hoth, P. (eds). The Baltic Sea Basin. Central and Eastern European Development Studies. Springer, Heidelberg, 2011.

14. Huising, E. J. and Gomes Pereira, L. M. Errors and accuracy estimates of laser data acquired by various laser scanning systems for topographic applications. ISPRS J. Photogramm., 2004, 53, 245–261.
http://dx.doi.org/10.1016/S0924-2716(98)00013-6

15. Hünicke, B., Zorita, E., Soomere, T., Madsen, K. S., Johans­son, M., and Suursaar, Ü. Recent change – sea level and wind waves. In Assess­ment of Climate Change for the Baltic Sea Basin. (The BACC Author Team). Regional Climate Studies. Springer, 2015, 155–185.
http://dx.doi.org/10.1007/978-3-319-16006-1_9

16. Julge, K. and Ellmann, A. Combining airborne and terrestrial laser scanning technologies for measuring complex structures. In Selected Papers of the 9th International Conference on Environmental Engineer­ing, Vilnius, Lithuania, 22–23, May, 2014 (Cygas, D., ed.). Vilnius Gediminas Technical University Press “Technika”, Vilnius. CD.
http://dx.doi.org/10.3846/enviro.2014.213

17. Julge, K., Eelsalu, M., Grünthal, E., Talvik, S., Ell­mann, A., Soomere, T., and Tõnisson, H. Combining airborne and terrestrial laser scanning to monitor coastal processes. In The 6th IEEE/OES Baltic Symposium ‘Measuring and Modeling of Multi-Scale Interactions in the Marine Environment’, May 26–29, Tallinn, Estonia. IEEE Con­ference Publications, 2014, 1–9.
http://dx.doi.org/10.1109/baltic.2014.6887874

18. Kall, T., Oja, T., and Tänavsuu, K. Postglacial land uplift in Estonia based on four precise levelings. Tectono­physics, 2014, 610, 25–38.
http://dx.doi.org/10.1016/j.tecto.2013.10.002

19. Kartau, K., Soomere, T., and Tõnisson, H. Quantification of sediment loss from semi-sheltered beaches: a case study for Valgerand Beach, Pärnu Bay, the Baltic Sea. J. Coastal Res., 2011, SI 64, 100–104.

20. Kask, A., Soomere, T., Healy, T. R., and Delpeche, N. Rapid estimates of sediment loss for “almost equilibrium” beaches. J. Coastal Res., 2009, SI 56, 971–975.

21. Leppäranta, M. and Myrberg, K. The Physical Oceano­graphy of the Baltic Sea. Springer, Berlin, 2009.
http://dx.doi.org/10.1007/978-3-540-79703-6

22. Orviku, K. Estonian Coasts. Tallinn, 1974 [in Russian].

23. Orviku, K. Seashore needs better protection. In Year-Book of the Estonian Geographical Society, 2005, 35, 111–129 [in Estonian, with English summary].

24. Orviku, K. and Granö, O. Contemporary coasts. In Geology of the Gulf of Finland (Raukas, A. and Hyvärinen, H., eds). Valgus, Tallinn, 1992, 219–238 [in Russian].

25. Orviku, K. and Veisson, M. Lithodynamical investigations on the most important resort areas of Estonia and in the area of the Olympic Yachting Centre in Tallinn. Research report. Institute of Geology, Tallinn, 1979 [in Russian].

26. Orviku, K., Jaagus, J., Kont, A., Ratas, U., and Rivis, R. Increasing activity of coastal processes associated with climate change in Estonia. J. Coastal Res., 2003, 19, 364–375.

27. Pilkey, O., Young, R., and Cooper, A. Quantitative model­ing of coastal processes: A boom or a bust for society? In GSA Special Papers, 2013, 502, 135–144.
http://dx.doi.org/10.1130/2013.2502(07)

28. Ryabchuk, D., Kolesov, A., Chubarenko, B., Spirido­nov, M., Kurennoy, D., and Soomere, T. Coastal erosion pro­cesses in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environ. Res., 2011, 16(Suppl. A), 117–137.

29. Soomere, T. and Healy, T. On the dynamics of “almost equilibrium” beaches in semi-sheltered bays along the southern coast of the Gulf of Finland. In The Baltic Sea Basin (Harff, J., Björck, S., and Hoth, P., eds). Central and Eastern European Development Studies, Part 5. Springer, Heidelberg, 2011, 255–279.

30. Soomere, T. and Keevallik, S. Directional and extreme wind properties in the Gulf of Finland. Proc. Estonian Acad. Sci., Eng., 2003, 9, 73–90.

31. Soomere, T., Kask, A., Kask, J., and Nerman, R. Transport and distribution of bottom sediments at Pirita Beach. Estonian J. Earth Sci., 2007, 56, 233–254.
http://dx.doi.org/10.3176/earth.2007.04

32. Soomere, T., Kask, A., Kask, J., and Healy, T. Modelling of wave climate and sediment transport patterns at a tideless embayed beach, Pirita Beach, Estonia. J. Marine Syst., 2008, 74(Suppl.), S133–S146.
http://dx.doi.org/10.1016/j.jmarsys.2008.03.024

33. Soomere, T., Viška, M., and Eelsalu, M. Spatial variations of wave loads and closure depth along the eastern Baltic Sea coast. Estonian J. Eng., 2013, 19, 93–109.
http://dx.doi.org/10.3176/eng.2013.2.01

34. Stockdon, H. F., Sallenger, A. H., Jr., List, J. H., and Hol­man, R. A. 2002. Estimation of shoreline position and change using airborne topographic lidar data. J. Coastal Res., 18, 502–513.

35. Suuroja, S., Talpas, A., and Suuroja, K. Mererannikute seire. Report on activities on the subprogram “Monitor­ing of sea coasts of the state environmental monitoring in 2003. Part II: graphical attachments. Manuscript, Estonian Geological Survey, Tallinn, 2004 [in Estonian]. See also http://seire.keskkonnainfo.ee/index.php?option=com_ content&view=article&id=2096&Itemid=409

36. Tõnisson, H., Suursaar, Ü., Suuroja, S., Ryabchuk, D., Orviku, K., Kont, A., et al. Changes on coasts of western Estonia and Russian Gulf of Finland, caused by extreme storm Berit in November 2011. In IEEE/OES Baltic 2012 Inter­national Symposium: May 8–11, 2012, Klaipeda, Lithuania, Proceedings. IEEE, 2012, 1–7.

37. Viška, M. Coastal erosion analysis using LiDAR data and field measurements in Zvejniekciems beach, east coast of the Gulf of Riga. In 5th International Student Conference [on] Biodiversity and Functioning of Aquatic Ecosystems in the Baltic Sea Region: October 6–8, 2010, Palanga, Lithuania, Klaipeda, Conference Proceedings. 2010, 109–110.

Back to Issue