ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Complexity in engineering and natural sciences; pp. 249–255
PDF | doi: 10.3176/proc.2015.3.07

Author
Jüri Engelbrecht
Abstract

An overview is presented on interdisciplinary studies into complexity of wave processes with the main attention to wave–wave, field–field, wave–internal structure a.o. interactions. The nonlinearity of these processes creates specific physical phenomena as a result of interactions. The basic assumptions of modelling, main hypotheses adopted and resulting governing equations are presented. Due to complexity of processes, numerical methods are mainly used for the analysis. However, in many cases the methods (the finite volume method, the pseudospectral method) must be modified in order to guarantee the accuracy and stability of solutions. The spectrum of problems modelled and analysed is wide including dynamical processes in solids, fluids and tissues.

References

  1. Aben, H. Magnetophotoelasticity – photoelasticity in a magnetic field. Exp. Mech., 1970, 10, 97–105.
http://dx.doi.org/10.1007/BF02325113

  2. Aben, H. Integrated Photoelasticity. McGraw-Hill, New York, 1979.

  3. Aben, H. and Josepson, J. Strange interference blots in the interferometry of inhomogeneous birefringent objects. Appl. Opt., 1997, 36, 7172–7179.
http://dx.doi.org/10.1364/AO.36.007172

  4. Aben, H., Anton, J., and Errapart, A. Modern photoelasticity for residual stress measurement in glass. Strain, 2008, 44, 40–48.
http://dx.doi.org/10.1111/j.1475-1305.2008.00422.x

  5. Ainola, L. and Aben, H. On the optical theory of photoelastic tomography. J. Opt. Soc. Am., 2004, 21, 1093–1101.
http://dx.doi.org/10.1364/JOSAA.21.001093

  6. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore, 2008.
http://dx.doi.org/10.1142/6931

  7. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Generalized thermomechanics with internal variables. Arch. Appl. Mech., 2011, 81, 229–240.
http://dx.doi.org/10.1007/s00419-010-0412-0

  8. Berezovski, A., Engelbrecht, J., and Berezovski, M. Waves in microstructured solids: a unified view point of modelling. Acta Mechanica, 2011, 220, 349–363.
http://dx.doi.org/10.1007/s00707-011-0468-0

  9. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Thermoelasticity with dual internal variables. J. Thermal Stresses, 2011, 34, 413–430.
http://dx.doi.org/10.1080/01495739.2011.564000

10. Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., and Berezovski, M. Dispersive waves in microstructured solids. Int. J. Solids and Structures, 2013, 50, 1981–1990.
http://dx.doi.org/10.1016/j.ijsolstr.2013.02.018

11. Berezovski, A., Engelbrecht, J., and Ván, P. Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech., 2014, 84, 1249–1261.
http://dx.doi.org/10.1007/s00419-014-0858-6

12. Braunbrück, A. and Ravasoo, A. Application of counterpropagating nonlinear waves to material characterization. Acta Mechanica, 2005, 174, 51–61.
http://dx.doi.org/10.1007/s00707-004-0163-5

13. Eik, M. Orientation of Short Steel Fibres in Concrete: Measuring and Modelling. PhD thesis, Aalto University/Tallinn University of Technology, 2014.

14. Engelbrecht, J. Nonlinear Wave Dynamics. Complexity and Simplicity. Kluwer, Dordrecht, 1997.
http://dx.doi.org/10.1007/978-94-015-8891-1

15. Engelbrecht, J., Vendelin, M., and Maugin, G. A. Hierarchical internal variables reflecting microstructural properties: application to cardiac muscle contraction. J. Non-Equilib. Thermodyn., 2000, 25, 119–130.
http://dx.doi.org/10.1515/jnetdy.2000.008

16. Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M. Waves in microstructured materials and dispersion. Phil. Mag., 2005, 85, 4127–4141.
http://dx.doi.org/10.1080/14786430500362769

17. Engelbrecht, J., Pastrone, F., Braun, M., and Berezovski, A. Hierarchies of waves in nonclassical materials. In Universality in Nonclassical Nonlinearity (Delsanto, P. P., ed.), pp. 29–47. Springer, New York, 2007.

18. Engelbrecht, J. Complexity of mechanics. Rend. Sem. Mat. Univ. Pol. Torino, 2009, 67, 293–325.

19. Engelbrecht, J., Berezovski, A., and Soomere, T. Highlights in the research into complexity of nonlinear waves. Proc. Estonian Acad. Sci., 2010, 59, 61–65.
http://dx.doi.org/10.3176/proc.2010.2.01

20. Engelbrecht, J., Salupere, A., and Tamm, K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion, 2011, 48, 717–726.
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001

21. Engelbrecht, J. and Berezovski, A. Internal structures and internal variables in solids. J. Mech. Mater. Struct., 2012, 7, 983–996.
http://dx.doi.org/10.2140/jomms.2012.7.983

22. Engelbrecht, J. Questions About Elastic Waves. Springer, Cham, Heidelberg et al., 2015.

23. Érdi, P. Complexity Explained. Springer, Berlin, Heidelberg, 2008.

24. Herrmann, H. and Engelbrecht, J. The balance of spin from the point of view of mesoscopic continuum physics for liquid crystals. J. Non-Equilib. Thermodyn., 2010, 35, 337–346.

25. Herrmann, H. and Eik, M. Some comments on the theory of short fibre reinforced materials. Proc. Estonian Acad. Sci., 2011, 60, 179–183.
http://dx.doi.org/10.3176/proc.2011.3.06

26. Herrmann, H. and Engelbrecht, J. Comments on mesoscopic continuum physics: evolution equation for the distribution function and open questions. Proc. Estonian Acad. Sci., 2012, 61, 71–74.
http://dx.doi.org/10.3176/proc.2012.1.10

27. Hill, T. L. Theoretical formalism for the sliding filament model of contraction of striated muscle. Part I. Prog. Biophys. Mol. Biol., 1974, 28, 267–340.
http://dx.doi.org/10.1016/0079-6107(74)90020-0

28. Jones, E., Oliphant, T., Peterson, P. et al. SciPy: open source scientific tools for Python. 2007. http://www.scipy.org/ (accessed 16.04.2015).

29. Kadomtsev, B. B. and Petviashvili, V. I. The stability of solitary waves in weakly dispersive media. Dokl. Akad. Nauk SSSR, 1970, 192, 532–541.

30. Kalda, J. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett., 2000, 84, 471–474.
http://dx.doi.org/10.1103/PhysRevLett.84.471

31. Kalda, J. Description of random gaussian surfaces by a four-vertex model. Phys. Rev. Lett., 2001, 64, 020101.
http://dx.doi.org/10.1103/physreve.64.020101

32. Kalda, J. Sticky particles in compressible flows: aggregation and Richardson’s law. Phys. Rev. Lett., 2007, 98, 064501.
http://dx.doi.org/10.1103/PhysRevLett.98.064501

33. Kalda, J. and Morozenko, A. Turbulent mixing: the roots of intermittency. New J. Physics, 2008, 10, 093003.
http://dx.doi.org/10.1088/1367-2630/10/9/093003

34. Kalda, J. K-spectrum of decaying, aging and growing passive scalars in lagrangian chaotic fluid flows. J. Phys. Conf. Series, 2011, 318, 052045.
http://dx.doi.org/10.1088/1742-6596/318/5/052045

35. Kalda, J., Peterson, P., Engelbrecht, J., and Vendelin, M. A cross-bridge model describing the mechanoenergetics of actomyosin interaction. In Proc. IUTAM Symposium on Computer Models in Biomechanics (Holzapfel, G. and Kuhn, E., eds), pp. 91–102. Springer, 2012.

36. Kartofelev, D. and Stulov, A. Propagation of deformation waves in wool felt. Acta Mechanica, 2014, 225, 1–11.
http://dx.doi.org/10.1007/s00707-014-1109-1

37. Kitt, R., Säkki, M., and Kalda, J. Probability of large movements in financial markets. Physica A: Stat. Mech. Appl., 2009, 388, 4838–4844.
http://dx.doi.org/10.1016/j.physa.2009.07.027

38. LeVeque, R. J. Finite Volume Methods for Hyperbolic Systems. Cambridge University Press, Cambridge, 2002.
http://dx.doi.org/10.1017/CBO9780511791253

39. Maugin, G. A. Internal variables and dissipative structures. J. Non-Equilib. Thermodyn., 1990, 15, 173–192.

40. Maugin, G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford, 1999.

41. Maugin, G. A. On thermomechanics of continuous media with diffusion and/or weak nonlocality. Arch. Appl. Mech., 2006, 75, 723–738.
http://dx.doi.org/10.1007/s00419-006-0062-4

42. Mandre, I. and Kalda, J. Monte-Carlo study of scaling exponents of rough surfaces and correlated percolation. Eur. Phys. J. B, 2011, 83, 107–113.
http://dx.doi.org/10.1140/epjb/e2011-20386-4

43. Mariano, P. M. Multifield theories in mechanics of solids. In Advances in Applied Mechanics (van der Giessen, E. and Wu, T. Y., eds), pp. 1–93. Academic Press, New York, 2001.

44. Meyers, R. A. (ed.). Encyclopedia of Complexity and Systems Science. Springer, New York, Vols 1–11, 2009.
http://dx.doi.org/10.1007/978-0-387-30440-3

45. Nicolis, G. and Nicolis, C. Foundations of Complex Systems. World Scientific, New Jersey et al., 2007.

46. Pastorelli, E. and Herrmann, H. A small-scale, low-budget semi-immersive virtual environment for scientific visualization and research. Procedia Comp. Sci., 2013, 25, 14–22.
http://dx.doi.org/10.1016/j.procs.2013.11.003

47. Peterson, P., Soomere, T., Engelbrecht, J., and van Groesen, E. Soliton interaction as a possible model for extreme waves in shallow water. Nonlinear Processes Geophys., 2003, 10, 503–510.
http://dx.doi.org/10.5194/npg-10-503-2003

48. Peterson, P. F2PY: Fortran to Python Interface Generator. 2005. http://cens.ioc.ee/projects/f2py2e (accessed 16.04.2015).

49. Prigogine, I. and Stengers, I. Order out of Chaos. Heinemann, London, 1984.

50. Randrüüt, M. and Braun, M. On one-dimensional waves in microstructured solids. Wave Motion, 2010, 47, 217–230.
http://dx.doi.org/10.1016/j.wavemoti.2009.11.002

51. Ravasoo, A. Non-linear interaction of waves in prestressed material. Int. J. Non-Linear Mech., 2007, 42, 1162–1169.
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.09.004

52. Ravasoo, A. Interaction of bursts in exponentially graded materials characterized by parametric plots. Wave Motion, 2014, 51, 758–767.
http://dx.doi.org/10.1016/j.wavemoti.2014.01.006

53. Salupere, A. The pseudo-spectral method and discrete spectral analysis. In Applied Wave Mathematics (Quak, E. and Soomere, T., eds). 2009, 301–333.
http://dx.doi.org/10.1007/978-3-642-00585-5_16

54. Scott, A. C. The Nonlinear Universe. Chaos, Emergence, Life. Springer, Berlin et al., 2010.

55. Sertakov, J., Engelbrecht, J., and Janno, J. Modelling 2D wave motion in microstructured solids. Mech. Research Comm., 2014, 56, 41–49.
http://dx.doi.org/10.1016/j.mechrescom.2013.11.007

56. Stulov, A. Hysteretic model of the grand piano hammer felt. J. Acoust. Soc. Am., 1995, 97, 2577–2585.
http://dx.doi.org/10.1121/1.411912

57. Stulov, A. Dynamic behavior and mechanical features of wool felt. Acta Mechanica, 2004, 169, 13–21.
http://dx.doi.org/10.1007/s00707-004-0104-3

58. Ván, P., Berezovski, A., and Engelbrecht, J. Internal variables and dynamic degrees of freedom. J. Non-Equilib. Thermodyn., 2008, 33, 235–254.

59. Ván, P., Papenfuss, C., and Berezovski, A. Thermodynamic approarch to generalized continua. Cont. Mech. Thermodyn., 2014, 25, 403–420.
http://dx.doi.org/10.1007/s00161-013-0311-z

60. Vendelin, M., Bovendeerd, P. H. M., Arts, T., Engelbrecht, J., and van Campen, D. H. Cardiac mechanoenergetics replicated by cross-bridge model. Ann. Biomed. Eng., 2000, 28, 629–640.
http://dx.doi.org/10.1114/1.1305910

61. Whitham, G. B. Linear and Nonlinear Waves. J. Wiley, New York, 1974.

Back to Issue