In this article we give a review of our recent results on the instability and stability properties of travelling wave solutions of the double dispersion equation utt – uxx + auxxxx – buxxtt = – (|u|p–1u)xx for p > 1, a ³ b > 0. After a brief reminder of the general class of nonlocal wave equations to which the double dispersion equation belongs, we summarize our findings for both the existence and orbital stability/instability of travelling wave solutions to the general class of nonlocal wave equations. We then state (i) the conditions under which travelling wave solutions of the double dispersion equation are unstable by blow-up and (ii) the conditions under which the travelling waves are orbitally stable. We plot the instability/stability regions in the plane defined by wave velocity and the quotient b/a for various values of p.
1. Erbay, H. A., Erbay, S., and Erkip, A. Existence and stability of traveling waves for a class of nonlocal nonlinear equations. J. Math. Anal. Appl., 2015, 425, 307–336.
http://dx.doi.org/10.1016/j.jmaa.2014.12.039
2. Erbay, H. A., Erbay, S., and Erkip, A. Instability and stability properties of traveling waves for the double dispersion equation. http://arxiv.org/pdf/1407.2022.pdf
3. Samsonov, A. M. Strain Solitons in Solids and How to Construct Them. Chapman and Hall, Boca Raton, 2001.
http://dx.doi.org/10.1201/9781420026139
4. Porubov, A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore, 2003.
http://dx.doi.org/10.1142/5238
5. Christov, C. I., Maugin, G. A., and Porubov, A. V. On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mécanique, 2007, 335, 521–535.
http://dx.doi.org/10.1016/j.crme.2007.08.006
6. Engelbrecht, J., Salupere, A., and Tamm, K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion, 2011, 48, 717–726.
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001
7. Boussinesq, J. Theorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl., 1872, 17, 55–108.
8. Ostrovskii, L. A. and Sutin, A. M. Nonlinear elastic waves in rods. J. Appl. Math. Mech., 1977, 41, 543–549.
http://dx.doi.org/10.1016/0021-8928(77)90046-6
9. Duruk, N., Erkip, A., and Erbay, H. A. A higher-order Boussinesq equation in locally nonlinear theory of one-dimensional nonlocal elasticity. IMA J. Appl. Math., 2009, 74, 97–106.
http://dx.doi.org/10.1093/imamat/hxn020
10. Duruk, N., Erbay, H. A., and Erkip, A. Global existence and blow-up for a class of nonlocal nonlinear Cauchy problems arising in elasticity. Nonlinearity, 2010, 23, 107–118.
http://dx.doi.org/10.1088/0951-7715/23/1/006
11. Stubbe, J. Existence and stability of solitary waves of Boussinesq-type equations. Port. Math., 1989, 46, 501–516.
12. Babaoglu, C., Erbay, H. A., and Erkip, A. Global existence and blow-up of solutions for a general class of doubly dispersive nonlocal nonlinear wave equations. Nonlinear Anal., 2013, 77, 82–93.
http://dx.doi.org/10.1016/j.na.2012.09.001
13. Erbay, H. A., Erbay, S., and Erkip, A. Thresholds for global existence and blow-up in a general class of doubly dispersive nonlocal nonlinear wave equations. Nonlinear Anal., 2014, 95, 313–322.
http://dx.doi.org/10.1016/j.na.2013.09.013
14. Lions, P. L. The concentration-compactness principle in the calculus of variation: The locally compact case part 1. Ann. I. H. Poincare-An., 1984, 1, 109–145.
15. Lions, P. L. The concentration-compactness principle in the calculus of variation: The locally compact case part 2. Ann. I. H. Poincare-An., 1984, 1, 223–283.
16. Bona, J. L. and Sachs, R. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys., 1988, 118, 15–29.
http://dx.doi.org/10.1007/BF01218475
17. Levine, H. A. Instability and nonexistence of global solutions to nonlinear wave equations of the form Putt = –Au + f (u). Tr. Am. Math. Soc., 1974, 192, 1–21.
http://dx.doi.org/10.2307/1996814